Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическая прочность ADP-кристаллов

Аномально высокая ионная проводимость появляется при некоторой температуре Ткр, характерной для каждого вещества. Такое увеличение проводимости обусловлено, в конечном счете, скачкообразным разупорядочением ( плавлением ) подрешетки, образованной одним из сортов ионов. Другая подрешетка, т. е. объемная структура, образованная другим сортом (или сортами) ионов, сохраняет при этом жесткость и обеспечивает тем самым механическую прочность кристалла как целого.  [c.275]

Механическая прочность кристаллов вдоль плоскостей велика, в то время как в поперечном направлении кристаллы сравнительно легко расщепляются. При окислении в нормальных условиях связь между атомами в слое не нарушается. Однако молекулы кислорода или воды легко проникают в межплоскостные пространства и увеличивают расстояние между ними. В результате такого набухания графита происходит увеличение электросопротивления. Заметное окисление с образованием СО наступает при температурах более 180°С.  [c.278]


Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали.  [c.341]

Теорией дислокаций доказывается не только реальная прочность кристаллов, но и объясняется ряд механических и физических свойств металлов и сплавов например, зависимость деформации от напряжения старение хрупкость влияние ства изменение плотности, электроп внутреннее трение полиморфизм  [c.17]

Потеря воды вызывает вспучивание слюды, увеличение ее толщины за счет расслаивания по плоскостям спайности. При значительном выделении кристаллизационной воды слюда теряет прозрачность, становится хрупкой, механическая прочность снижается, поверхность становится неровной и кристаллы могут под конец рассыпаться на отдельные чешуйки.  [c.216]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

Кроме природных слюд применяются также и синтетические. Слюда является весьма ценным природным минеральным электроизоляционным материалом. Использование ее в качестве изоляции крупных Турбо-и гидрогенераторов, тяговых электродвигателей и в качестве диэлектрика в некоторых конденсаторах связано с ее высокой электрической прочностью, нагревостойкостью, механической прочностью и гибкостью. В природе слюда встречается в виде кристаллов, которые способны легко расщепляться на пластинки по параллельным друг другу плоскостям (плоскостям спайности).  [c.231]


Твердотельные и жидкостные лазеры. Активной средой твердотельных лазеров являются кристаллы и стекла, содержащие в качестве активных примесей ионы переходных металлов (например, Сг), редкоземельных элементов (например, N l), актинидов (например, U). К ним предъявляются требования высокой прозрачности, однородности свойств, механической прочности и стойкости к излучению. Основным способом энергетической накачки является оптический. В качестве примера приведем лазеры на рубине и на алюмо-иттриевом гранате.  [c.341]

Проводятся исследования в области получения армирующих высокопрочных монокристаллических волокон или игольчатых кристаллов железа, сапфира, графита, имеющих высокую механическую прочность 1300, 1500 и 2000 кГ см соответст-  [c.180]

Используемое в промышленности естественное и искусственное старение сплавов, сопровождающееся выделением кристаллов новых фаз, является одним из основных методов улучшения определенных свойств некоторых сплавов, например повышения механической прочности алюминиевых, медных и никелевых сплавов, повышения жаропрочности никелевых, увеличения коэрцитивной силы медных сплавов и т. д.  [c.9]

Теория дислокаций впервые объяснила причину огромного различия теоретически рассчитанной прочности кристаллов с совершенной структурой и экспериментально определяемой прочности дефектных кристаллов. И. А. Одингом еще в конце 50-х годов была предложена гипотетическая зависимость прочности кристаллов от плотности дефектов, в частности дислокаций в кристаллах, в соответствии с которой один из путей повышения прочности, сопротивления сдвигу состоит в увеличении плотности дефектов решетки и их оптимального распределения в объеме материалов. Поскольку облучение быстрыми частицами является мощным способом создания целого комплекса дефектов решетки, оно и должно оказывать существенное влияние на механические свойства кристаллических тел.  [c.60]

Графит представляет собой темно-серые кристаллы со слабым металлическим блеском. Он имеет слоистую решетку. Слои этой решетки (их еще называют плоской сеткой) составлены нз правильных шестиугольников, в вершинах которых находятся ядра атомов углерода. Расстояние между соседними ядрами атомов 0,1415 нм. Соседние слои атомов углерода в кристалле графита находятся на довольно большом расстоянии один от другого (0,335 нм), что указывает на малую прочность связей между атомами углерода, расположенными в разных слоях. Соседние слои связаны между собой в основном силами Ван-дер-Ваальса, хотя частично связь имеет и металлический характер. Слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются один от другого. Этим объясняется малая механическая прочность графита. Графитовая пленка на поверхности металла детали сохраняет металлическую структуру и создает условия трения графита по графиту. Толщина графитовой пленки около 10 нм. Коэффициент трения в этом случае очень мал от 0,03 до 0,04.  [c.341]

Кроме применения сплавов титана для изготовления деталей арматуры в промышленности применяется антикоррозионное покрытие на основе титановых порошков. В этом покрытии титановый порошок, состоящий из кристаллов с сильно развитой поверхностью, которые обладают высокой коррозионной стойкостью, применен как наполнитель, а вяжущее вещество — эпоксидная смола. Новое антикоррозионное покрытие по сравнению с известными имеет следующие преимущества высокую коррозионную стойкость, химическую устойчивость, высокую адгезию к металлу, что обеспечивает отличную сцеп-ляемость с защищаемой поверхностью, механическую прочность, долговечность, определяемую противодействием титанового порошка старению эпоксидной смолы.  [c.75]

Проведенной нами работой выявлено, что механическая прочность дренажных керамических труб, после пропитки торфяными смолами, повышается на 25—40%. Широко известны опыты академика А. Ф. Иоффе и его сотрудников [27] по разрыву кристаллов каменной соли под водой. В этих условиях каменная соль обнаруживает большую прочность. Вода, очевидно, растворяя поверхностный слой соли, устраняет тем самым имеюш,иеся в нем микротрещины.  [c.66]


Оценка достоверности расчетных данных по максимальной прочности кристаллов затруднена ввиду отсутствия надежных экспериментальных данных. Большинство опытов по определению максимальной прочности металлических кристаллов, как известно, проводили на нитевидных кристаллах. Значения прочности, близкие к расчетным, были получены лишь на ограниченном числе объектов. Это связано с трудностью проведения экспериментов на образцах микронного размера при механическом нагружении и наличием исходных дефектов в кристаллах.  [c.149]

Разница в физико-химических и механических свойствах в разных направлениях может быть весьма существенной. При измерении в двух взаимно перпендикулярных направлениях кристалла цинка значения температурного коэффициента линейного расширения различаются в 3-4 раза, а прочности кристалла железа — более, чем в два раза.  [c.10]

Термомеханическая прочность и разрушение активных элементов. По мере роста температурных перепадов в активном элементе увеличиваются также механические напряжения (табл. 4), что в конце концов может привести к его разрушению. Следует отметить, что на практике ограничение подводимой мощности накачки термомеханическим разрушением свойственно активным элементам из сред с малой теплопроводностью (стекол и некоторых кристаллов, например, вольфраматов). Для АИГ Nd и рубина, обладающих высокими механической прочностью и теплопроводностью, термомеханическое разрушение активных элементов не характерно и такое ограничение обусловлено выходом из строя ламп накачки.  [c.26]

Уже в последующих модификациях аппаратуры были применены решения, позволяющие устранить эти недостатки. Ячейка Покельса была заменена на кристалл КДП, который обладает хорошей оптической прозрачностью в данном интервале длин волн, а для снижения модулирующего напряжения применялось дополнительное сужение луча с помощью коллимирующей системы. Это позволило сузить луч до 1 мм. Для обеспечения механической прочности кристалл был помещен в металлический корпус. Эти усовершенствования позволили снизить потребляемый уровень мощности на два порядка. Модулятор работал при напряжении 18 В и потреблял ток 50 мА [26].  [c.85]

Пьезоэлектрические преобразователи давления. Действие пьезоэлектрических преобразователей основано на использовании пьезоэлектрического эффекта, имеющего место у некоторых кристаллов (кварца, турмалина, титаната бария и др.) при их деформации на их поверхности появляются электростатические заряды. В приборах давления в качестве пьезоэлектрического преобразователя обычно используется кварц (810г). Кварц негигроскопичен, обладает достаточной механической прочностью, имеет хорошие изоляционные свойства, и, что не менее важно, его пьезоэлектрические свойства практически не зависят от температуры в пределах от 20 до 400 °С.  [c.161]

Дмслокаипи оказывают существенное влиянне на свойства кристаллов, в особенности на их механические характеристики. Из-за свободного перемещения дислокаций уже кри незначительных напряжениях в кристалле происходят заметные сдвиги, т. е. возникает пластическое течение кристалла. Поэтому дислокации могут рассматриваться как элементарные носители пластичности кристалла. Насколько существенна роль дислокаций, видно из следующего сравнения в отсутствие дислокаций предельное напряжение в кристалле, а следовательно, и прочность составляет G, а при наличии дислокаций — на несколько порядков (от трех до одного) меньше. Препятствуя движению дислокаций в кристалле путем внесения в него атомов некоторых элементов (легирование) или изменяя его поликристаллическую структуру так, чтобы возникли препятствия для движения дислокаций (напри мер, уменьшая размер отдельных кристаллитов — зерен т. е. значительно увеличивая межзеренные границы, ока зывающие тормозящее действие на движение дислокаций или создавая разветвленную дислокационную структуру в которой движение дислокаций тормозится другими дн слокациями), можно повысить прочность кристалла Однако пластичность кристалла при этом может сии зиться.  [c.370]

При пластическом деформировании одна часть кристалла перемещается (сдвигается) гю отношению к другой. Если нагрузку снять, то смещенная часть кристалла не возвратится на прежнее место, деформация сохранится. Эти сдвиги обнаруживаются при микрострук-турном исследовании. Пластическая деформация вызывает уменьшение плотности металла и увеличение его удельного объема. Пластически деформированный при резании слой не может свободно уиеличиваться в объеме, так как этому препятствует недеформированный металл, поэтому в наружном слое возникают напряжения сжатия, а в остальной части изделия - напряжения растяжения. Этот механизм реализуется, если деформируемый слой не находится в состоянии ползучести. В результате механическая прочность и микротвердость поверхностных  [c.48]

Производство большинства угольных изделий заключается в измельчении углеродистого сырья, смешении его со связками (каменноугольные пеки и смолы), формовании и обжиге, после которого изделие приобретает достаточно механическую прочность и твердость. В угольную массу часто вводят разные добавки, например в щетки для электрических машин с целью повышения проводимости — медный или бронзовый порошок, в осветительные угли — разные соли, придающие определенную окраску электрической дуге, создаваемой с помощью этих углей. Введение кокса повышает механическую прочность изделий, делает их более устойчивыми к удару. При производстве угольных щеток часто прибегают к процессу графитирования, заключающемуся в термообработке, увеличивающей размеры кристаллов, что повышает проводимость и снижает твердость. Обожженные щетки омедняют с по-  [c.264]

Слюдопластовые бумаги служат для изготовления слюдопластов (делятся по применению на те же группы, что и слюдиниты). Слюдопластовые бумаги изготовляются, как и слюдинитовые бумаги, на бумагоделательной машине, но без применения связующего. Такая технология возможна благодаря тому, что сразу после расщепления кристаллы (чешуйки) природной слюды способны прочно соединяться за счет сил межмолекулярного взаимодействия (силы когезии). По сравнению со слюдинитами слюдопласты имеют, как правило, более высокую механическую прочность и более высокую устойчивость к воздействию электрической короны (короностойкость).  [c.235]


Этилендиаминтартрат (ЭДТ) QHuNaOg представляет собой пьезоэлектрический кристалл, сравнительно легко выращиваемый в лабораторных условиях. Значение ньезомодулей у него выше, чем у кварца и достигает примерно (7 -ь 10)-10" м1в. Кристалл имеет ряд срезов с близким к нулю значением ТКЧ и при низких частотах используется в кристаллических фильтрах и стабилизированных генераторах. Кристаллы ЭДТ имеют более низкую механическую прочность и добротность, нежели кварц.  [c.161]

Второй вид связи — ионная связь — определяется силами притяжения между положительными и отрицательными ионами. Твердые тела ионной структуры характеризуются повышенной механической прочностью н относительно высокой температурой плавления. Типичными примерами ионных кристаллов являются галогеииды щелочных металлов.  [c.10]

Слюда является важнейшим из природных минеральных электроизоляционных материалов. Благодаря ее исключительно ценным качествам высокой электрической прочности, нагревостойкости, влагостойкости, механической прочности и гибкости слюду применяют в ответственных случаях, в частности в качестве изоляции электрических машин высоких напряжений и больших мош,ностей (в том числе крупных турбогенераторов и гидрогенераторов, тяговых электродвигателей) и в качестве диэлектрика в некоторых конструкциях конденсаторов. Слюда встречается в природе в виде кристаллов, характерной особенностью которых является способность легко расш,епляться на пластинки по параллельным друг другу плоскостям (плоскости спайности). Богатые месторождения слюд имеются и в нашей стране. Из зарубежных стран крупнейшими слюдяными месторождениями располагает Индия.  [c.175]

Слюдопласты изготовляют, используя свойство чистых поверхностей недавно расколотых кристаллов природной слюды при их сложении вместе вновь прочно соединяться когезионными силами. В производстве слюдопластовой бумаги измельченные чешуйки слюды флогопит или мусковит отливаются на бумагоделательной машине как и слюдинитовые бумаги получаются бумаги толщиной от 0,4 до 0,2 мм с пределом прочности при растяжении до 90 МПа даже без применения связующих. На основе слюдопластовых бумаг соответствующими технологическими приемами с использованием связующих, а если требуется —подложек, изготовляются слюдопласты коллекторный, прокладочный, формовочный и гибкий, стек-лослюдопласт, слюдопластофолий, слюдопластовая лента и др. Слюдопласты, как правило, имеют более высокую механическую прочность, а также более высокую короностойкость по сравнению со слюдиннтами.  [c.180]

На рис. 4 (см. вклейку) представлены микрофотографии изломов образцов, спеченных при различных температурах. Температуре спекания 670° С соответствует материал в стеклообразном состоянии с закрытыми порами (рис. 4, а), в котором отмечено появление мелких единичных кристаллов (по-видимому, низкотемпературной формы метабората цинка). Однако рентгенографически кристаллических фаз в материале не обнаружено (рис. 3, а). В процессе спекания при 670° С мелкие поры мигрируют в более крупные, пористость снижается и наблюдается усадка. Спекание при температуре 685° С приводит к кристаллизации а-метабората цинка, но стеклофаза по-прежнему преобладает (рис. 4, б). При температуре 710 С материал формируется в плотное мелкокристаллическое тело с однородной микроструктурой (рис. 2, б). Кристаллическая фаза здесь в основном представлена кристаллами неправильной вытянутой формы размером 7— Ъ мкм. Материал, полученный при данной температуре, обладает высокой механической прочностью (оизг = 750—800 кПсм ) и повышенной износостойкостью. Присутствие в материале а-метабората цинка в качестве основной кристаллической фазы обеспечивает необходимый коэффициент термического расширения, примерно равный коэффициенту расширения алмаза а о-ьжс, = 29,3 10 град [3].  [c.119]

Смешанная кремнеториевая присадка в вольфраме ВМ (0,25% Si02, 0,25 % K l, 0,25% ThO) содействует образованию при рекристаллизации длинных, прочно соединенных кристаллов. Вольфрам ВМ отличается механической прочностью и хорошей формоустойчивостью при температурах ниже 2400 К-  [c.35]

Одновременное действие TiOj на снижение температуры спекания и рост кристаллов широко используют в промышленности, в частности при производстве спекшихся корундовых изделий. Изделия, в массу которых введен 1% ТЮз, обжигают при 1550°С. Обжиг глинозема с добавкой TiOj в восстановительной среде вызывает интенсивное сине-черное окрашивание корунда, характерное для соединений переходного состава TiOj с недостатком кислорода. Крупнозернистый корунд с добавкой ТЮг отличается более высокой термостойкостью по сравнению с корундом нормальной кристаллизации, но имеет меньшую механическую прочность.  [c.110]

Михайловский и др. [272] реализовали метод нагружения микрообразца пондеромоторными силами электрического поля с использованием ионного полевого электронного микроскопа с напряженностью поля 10 —10 В/см. Ионно-микроскопический метод исключает возможность механического повреждения микрокристалла при монтаже образца, так как образец еще до утонения крепится одним концом к массивному держателю (другой конец, к которому прикладываются пондеромоторные силы, остается свободным). Исследовали приготовленные методом утонения бездислока-ционные микрокристаллы (что контролировали с помощью электронной микроскопии) ряда металлов с ЩК- и ОЦК-решетками. Установлена масштабная инвариантность максимальной прочности кристаллов и отсутствие дисперсии.  [c.149]

Механические испытания на растяжение НК кремния при комнатной температуре показали общеизвестную масштабную зависимость прочности усов от величины их диаметра (рис. 144) [651, 652J. При этом обращает на себя внимание тот факт, что при диаметре усов порядка 1 мкм на них действительно реализуется прочность, близкая к теоретической прочности кристалла на сдвиг (ст = 720 кгс/мм === С7/10, см. рис. 144). С увеличением диаметра НК прочность их существенно снижается. Например, из рис. 144 видно, что прочность НК диаметром 15—16 мкм при 20° С составляет всего лишь 240 кгс/мм , т.е. уменьшается в 3 раза. При с > 50 мкм она фактически становится равной прочности макрообразцов Si.  [c.237]

Следует упомянуть еще об одном эффекте, связанном с тепловыделением в лазере, т. е. о механическом разрушении активного элемента под воздействием термических напряжений, возникающих в активном элементе при наличии в нем неоднородного температурного поля. Этот эффект ограничивает возможности повышения частоты следования импульсов и средней мощности в лазерах на стеклах и других средах, имеющих по сравнению с наиболее широко применяемыми кристаллами (рубином, гранатом) низкую теплопроводность и механическую прочность. Некоторые ослабления этих ограничений возможны при искусственном механическом упрочении боковой поверхности элементов [20], закалке активных элементов [29, 88], защите микротрещиноватого слоя на поверхности стекла от взаимодействия с хладагентом [120]. Вар иациИ состава стекол также дают возможность увеличить термомеханическую прочность некоторых элементов примером могут служить высококонцентрированные неодимфосфатные стекла, разработанные в ФИАН СССР [48].  [c.6]

Большое значение для получения различных электроизоляционных материалов, способных длительно работать при температуре 1000 °С и выше, приобретают нитевидные мо-нокрисгаллы тугоплавких соединений. Нитевидные кристаллы отличаются высокой механической прочностью, тугоплавкостью, химической инертностью и коррозионной стойкостью, малой плотностью, отсутствием фазовых превращений вплоть до температуры плавления и удовлетворительными диэлектрическими свойствами.  [c.264]


Морфологические особенности и физичес кие свойства природных асбестов выражаются в нитевидной форме агрегатов — кристаллов, состоящих из кремнекислородных тетраэдров, в способности их расщепляться на тончайшие волоконца, обладающие высокой механической прочностью и эластичностью. Ценными качествами асбестов являются также высокая нагрево-стойкость, стойкость при воздействии агрессивных сред (кислот и щелочей), адсорбционная способность, электро- и звукоизоляционные свойства, прядильная способность.  [c.265]

Большинство корундовых кристаллов при обжиге остается в исходной форме и благодаря высокому сопротивлению упругой деформации образует прочный каркас микроструктуры. Незначительная часть растворяется в стек-лофазе и является причиной возникновения вторичного муллита. Как следует из табл. 23.2, механическая прочность корундового фарфора значительно выше прочности обычного фарфора.  [c.212]


Смотреть страницы где упоминается термин Механическая прочность ADP-кристаллов : [c.924]    [c.220]    [c.171]    [c.217]    [c.6]    [c.180]    [c.486]    [c.418]    [c.176]    [c.591]    [c.283]    [c.169]    [c.114]    [c.298]    [c.4]   
Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.128 ]



ПОИСК



Прочность кристаллов



© 2025 Mash-xxl.info Реклама на сайте