Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мартенсит свойства

Для деталей, от которых требуется только поверхностная твердость, а остальные механические свойства не имеют большого значения, применяют закалку непосредственно с цементационного нагрева, т. е. 900—950°С (рис. 264,а). Выросшее в результате цементации зерно аустенита дает крупноигольчатый мартенсит на поверхности и грубо крупнозернистую структуру в сердцевине. Однако в последнее время ряд усовершенствований позволил применить этот способ и для ответственных детален (например, зубчатых колес коробки передач автомобиля и др.). Этот способ обладает и некоторыми несомненными преимуществами. Другие режимы термической обработки, которые мы рассмотрим ниже, предусматривают вторичные нагревы цементованных деталей до высоких температур. Эти нагревы вызывают дополнительное колебание детали и удорожают процесс термической обработки. Закалка с цементационного нагрева дает меньшую деформацию детали и обходится дешевле — это ее преимущества.  [c.329]


Радикальное средство для устранения излишнего количества остаточного аустенита в цементованном слое — обработка холодом детали после закалки охлаждают до отрицательных температур, что вызывает превращение почти всего аустенита в мартенсит в поверхностном слое и повышение твердости. Свойства сердцевины (содержащей малое количество углерода) при этом не изменяются, так как количество остаточного аустенита невелико и не изменяется при охлаждении в области отрицательных температур.  [c.383]

Ввиду высокого содержания легируюш,их элементов и низкого содержания углерода охлаждение при закалке можно осуществлять с любой скоростью без опасения образования не-мартенситных продуктов превращения аустенита. В наиболее распространенной по составу стали типа стареющий мартенсит с <0,03% С 18% Ni 10% Со 5% Мо 0,5% Ti 0,1% А1 мартенситное превращение начинается при 150—200°С и заканчивается практически полностью (<10% остаточного аустенита) при комнатной температуре. При содержании никеля более 18% мартенситное превращение заканчивается в области отрицательных температур, для этих сталей требуется обработка холодом, но, правда, свойства получаются более высокие (см. дальше).  [c.394]

Следует отметить, что и при максимально высокой температуре закалки первичные карбиды не растворяются в аустените. Сталь Р18 отличается от Р9 только более высоким содержанием избыточных первичных карбидов при одинаковой температуре закалки насыщенность аустенита и, следовательно, красностойкость мартенсита будут одинаковыми. Вот почему, несмотря на такое большое различие в составе, режущие свойства стали Р9 и Р18 практически одинаковы, так как мартенсит у них получается одного состава.  [c.425]

Режимы термической обработки и свойства сталей аустенито-мартенсит-з ого класса приведены в табл. 85.  [c.495]

В отличие от сплавов системы Fe—С эвтектоидная смесь в титановых сплавах обладает повышенной твердостью и хрупкостью, тогда как титановый мартенсит (a j невысокой твердостью и пластичностью и мало отличается по свойствам от исходной Р-фазы.  [c.514]

Превращение аустенита в мартенсит (являющийся основной структурной составляющей закаленной стали и определяющий ее свойства) отличается от всех других превращений в твердом состоянии. Мартенситное превращение возникает мгновенно и развивается с огромной скоростью, когда температура при охлаждении достигает точки М (начала мартенситного превращения). Эта температура не понижается с увеличением скорости охлаждения. Процесс при этом останавливается и значительная часть аустенита остается непревращенной. Повышение скорости охлаждения ниже температуры мартенситной точки увеличивает количество образующегося мартенсита и уменьшает количество остаточного аустенита.  [c.102]


Изменения свойств стали при закалке являются результатом образования неравновесных структур мартенсита, тростита, сорбита. Закалка основана на фазовых превращениях при нагреве и охлаждении. Быстрое охлаждение стали при закалке предотвращает превращение аустенита в перлит, вследствие чего и образуется одна из промежуточных структур распада аустенита мартенсит, тростит или сорбит. Применяя различные охладители при закалке, можно подобрать определенную скорость охлаждения, необходимую для получения требуемых структуры и свойств.  [c.118]

Вводимые легирующие элементы изменяют механические и физико-химические свойства стали. Легирование значительно повышает прочность и твердость при сохранении хорошей вязкости стали, увеличивает ее прокаливаемость, а также позволяет проводить закалку на мартенсит в умеренных охладителях, что уменьшает возможность появления трещин и коробления. Легирование придает сталям ряд особых свойств жаропрочность, окалиностойкость, кислотоупорность и др.  [c.155]

Как указывалось, углеродистые стали после закалки приобретают достаточные магнитные свойства (стали У10—У12), поскольку величина Я значительно возрастает после закалки на мартенсит в результате возникновения напряжений в кристаллической решетке.  [c.276]

Тип мартенсита определяет его механические и технологические свойства. Например, пластинчатый мартенсит в около-шовной зоне более склонен к образованию холодных трещин, чем пакетный. Это связано с тем, что у вершины двойниковой пластины создаются высокие плотность дислокаций и уровень микронапряжений.  [c.524]

Поэтому среди параметров, по которым оценивается структура, образующаяся в процессе деформации при ВТМО, очень важным является ее термическая устойчивость. Структура и соответственно свойства фазы, формирующейся при закалке (мартенсит), во многом наследует структуру исходной фазы (субзеренную структуру, дислокационные скопления и т.д.). Поэтому важно в процессе нагрева под закалку сохранить оптимальную структуру, сформировавшуюся при деформации.  [c.538]

Кроме рассмотренных ранее факторов, на структуру и свойства сплавов, испытывающих полиморфные превращения и подвергнутых ВТМО, существенное влияние оказывает наследование дефектов, созданных при горячей деформации высокотемпературной фазы (например, аустенита) низкотемпературной фазой (мартенсит-ной).  [c.545]

Высокие свойства объясняются большей плотностью дислокаций в мартенсите, дроблении его кристаллов на блоки. Дислокационная структура, формирующаяся в аустените, наследуется мартенситом.  [c.75]

После закалки не достигается максимальная твердость сталей (ИКС 62), т. к. в структуре, кроме мартенсита и первичных карбидов, содержится 30. 40% остаточного аустенита (Мк ниже 0 С). Он снижает механические свойства стали, ухудшает шлифуемость и стабильность размеров инструмента Остаточный аустенит превращают в мартенсит при отпуске или обработке холодом.  [c.110]

Отпуск при 600° С сплава комол позволяет использовать постоянный магнит из этого сплава в условиях несколько повышенных температур, при этом структурных превращений в сплаве не происходит, в то время как в кобальтовой стали, закаленной на мартенсит, даже при незначительном нагреве (до 50° С) резко ухудшаются магнитные свойства. Введение в сплав комол до 6% Мп улучшает механические свойства без снижения магнитных характеристик.  [c.220]

Кроме этого при серийном выпуске двигателей большое значение имеет стабильность магнитных и гистерезисных свойств в зависимости от колебаний состава, режима термической обработки и т. д. В качестве материалов для роторов гистерезисных двигателей применяют 1) стали, закаливаемые на мартенсит 2) литые и прессованные Fe—Ni—А1 сплавы 3) деформируемые сплавы.  [c.229]

Закалка с меньшей скоростью дает более мягкие, чем мартенсит, структуры — тростит или сорбит, обеспечивающие более низкие комплексы механических свойств.  [c.36]

Отпуск стали является заключительной операцией термообработки, выполняемой после закалки. Его основной целью является трансформирование полученного в результате закалки мартенсит в структуру, обладающую оптимальным комплексом вязкостно-прочностных свойств, способных обеспечить надежную и долговечную работу изделия в заданных условиях эксплуатации.  [c.36]


Средний отпуск производится при 350—450 °С (иногда 470 °С). При таком нагреве мартенсит полностью распадается на феррит-но-цементитную смесь, так как весь избыточный углерод покидает решетку мартенсита (и образуется феррит), а частицы эпсилон-карбида в результате перестройки н коагуляции превращаются в зернышки цементита. Образующаяся при среднем отпуске тонкая смесь феррита и зернистого цементита называется троститом отпуска. Она обладает высокими упругими свойствами и достаточной для долговечной работы вязкостью.  [c.37]

Такой мартенсит достаточно устойчин против отпуска (рис. 328, б). Отпуск при 200°С снижает твердость до НДС 58, а дальнейшее повышение тем пературы (до 500—525°С) снижает твердость в незначительной степени — с 58 до HR 55—56. Так как прочность н вязкость также мало изменяются и этом же интервале температур отпуска (такое изменение свойств характерно и для сталей типа Х12), то сталь Х6ВФ отпускают или при 150°С (для сохранения высокой твердости), или при 200°С (для некоторого понышения вязкости).  [c.438]

Чрезмерное повышение температуры нагрева вьнпе точки Лс , вызывает рост зерна аустеннта, что ухудытет свойства стали. Пели исходи и1 структура кристаллографически упорядочена (мартенсит, пндмапи1теттова структура, бейннт), при нагреве несколько выше /It , размер, форма и кристаллографическая ориентировка но-  [c.194]

Структура быстрорежущей стали после закалки представляет собой высоколегированный мартенсит, содержащий 0,3—0,4 % С, нерастворенные избыточные карбиды и остаточный аустенит (рис. 155, в). Чем выше температура закалки, тем ниже температура мартенситных точек УИ и М и тем больше количество остаточного аустенита. Обычно содержание остаточного аустенита в стали Р18 составляет 25—30 %, а в стали Р6М5 28—34 %, Остаточный аустенит понижает механические свойства стали, ухудиьает ее шлифуемость и стабильность размеров инструмента. Г]()эгому его присутствие в готовом 1П1Струменте нежелательно.  [c.301]

Показатель вязкости, хотя и представляется объективной энергетической характеристикой свойств материала, тем не менее зависит от условий испытания и определяется с широким разбросом. Поэтому, если обратиться к числовым значениям, следует привести только некоторые ориентировочные данные. Например, дюраль и мартенсит-ная сталь относятся к вязким материалам /С< = 110МН/м /, Для меди и титана К, .=90 MH/м / Эпоксидная смола имеет низкую вязкость 2 МН/м /.  [c.316]

Для изготовления особо ответственных изделий, а также изделий сложной формы (например, шестерен) применяются так называемые стали с регламентированной прокаливаемостью, характеризующиеся весьма высокой критической скоростью охлаждения. В этом случае требуется не только получить определенный слой %, содержащий чистый мартенсит, но и провести термообработку сердцевины, прогрев ее до надкритической температуры. Тогда на глубине, определяемой требованиями максимальной механической прочности изделия, образуется троосто-сорбитная структура, обеспечивающая высокие механические свойства сердцевины. Механические свойства изделия в целом в сильной степени определяются характером зависимости температуры от времени, как при нагреве, так и при охлаждении. Необходимые зависимости Т = / ( ) реализуются с помощью программных регуляторов. Этот вариант поверхностной закалки хотя и нашел применение в промышленности, но изучен еще недостаточно [43].  [c.174]

Дисперсионно-твердеющие сплавы имеют более стабильные магнитные свойства по сравнению со сталями, закаливаюш,имися на мартенсит, что определяется высокой стабильностью их структуры.  [c.220]

Стали для режущего инструмента должны быть твердыми и износостойкими. Поэтому они должны содержать достаточное количество углерода (0,8—1,0 %) и карбидобразующих элементов, главным образом хрома. Получающаяся у них после закалки и низкого отпуска структура (мартенсит отпуска с равномерно распределенными карбидами) обеспечивает высокие режущие свойства инструмента. Наиболее часто используются следующие марки легированных инструментальных сталей X, 9ХС, ХГСВФ (стали I группы).  [c.41]

Магнитнотвердые стали этой группы охватывают в основном хромистые, вольфрамовые и кобальтовые стали, которые приобретают повышенную коэрцитивную силу после закаливания на мартенсит. Помимо мартенсита после термообработки эти стали содержат. высокодисперсные карбиды. Наличие больших внутренних напряжений в основном предопределяет более высокую коэрцитивную силу, чем в обычных сталях. Хромистые стали отличаются от углеродистой стали присадкой хрома (до 3%) вольфрамовые н кобальтовые стали помимо хрома содержат соответственно присадки вольфрама (до 8%) и кобальта (до 15%). Введение вольфрама сопровождается повышением В , а кобальта — увеличением и В/, одновременно возрастает и (ВН)тах- Наиболее высокие для этих сталей магнитные свойства получаются в результате сложной термообработки, которая осуществляется после изготовления магнитов. Однако в магнитах из этих сталей наблюдается некоторое снижение остаточной индукции с течением времени. Для повышения стабильности применяют искусственное остарнвание выдерживанием. в кипящей воде и частичным размагничиванием готовых магнитов. Все стали допускают ковку в нагретом состоянии и холодную обработку ДО закалки..Магнитные характеристики относительно невысоки так, для хромистой стали с содержанием около 3% Сг и 1% С (остальное Fe) значения В, = 0,95 тЛ, — 4,8 ка1м-,- (ВН)тгх не менее 1,1 Kdot jM (табл. 20.1). Мартенситные стали могут применяться  [c.263]

Таблица 98. Механические свойства мартеновской стали (0,12о/о С) в зависимости от времени выдержки и температуры. Нагрев IISO , охлаждение в 1,5%-ном водном растворе КОН с дальнейшим погружением в жидкий азот на 30 мин для превращения остаточного аустенита в мартенсит). Таблица 98. Механические свойства <a href="/info/63766">мартеновской стали</a> (0,12о/о С) в зависимости от времени выдержки и температуры. Нагрев IISO , охлаждение в 1,5%-ном <a href="/info/48027">водном растворе</a> КОН с дальнейшим погружением в <a href="/info/63470">жидкий азот</a> на 30 мин для превращения остаточного аустенита в мартенсит).

Пластмасса из поливинилхлорида (без наполнителей и пластификаторов), называемая винипластом, изготовляется в виде листов толщиной от 0,3 до 10 мм. При горячей прессовке в этажерочных прессах из уложенных в стопки листов получается материал в виде монолитных пластин или досок. Кроме того, из винипласта изготовляются трубы, стержни и различные фасонные изделия. Винипласт имеет предел прочности при растяжении не менее 50 МПа, относительное удлинение перед разрывом от 10 до 50 %, удельную удгрную вязкость не менее 120 кДж/м он обладает ничтожной гигроскопичностью и высокой стойкостью ко многим растворителям и химически активным веществам. Электроизоляционные свойства винипласта р = 101 Ом-м Ps = 10 " Ом е, = 3,2—4,0 tg б = 0,01-г-0,05 р = 15- 35 МВ/м. Теплостойкость по Мартенсу не ниже 65 С.  [c.152]

Износостойкость белого чугуна при абразивном воздействии зависит от его механических свойств и свойств отдельных структурных составляющих (микротвердости, прочности, вязкости, формы, взаимного расположения и связи, количественного соотношения). Основные структурные составляющие белого чугуна распола гаются по возрастанию микротвердости в следующем порядке эвтектоид (перлит, сорбит, троостит), аустенит, мартенсит, цементит, легированный цементит, карбиды хрома, воль ама, ванадия и других элементов, бориды.  [c.51]

Весьма хорошие свойства имеет чугун, содержаш,ий 0,8—1,67о Сг и 2,0—3,8% Ni. Сплавы этого типа имеют аустенито-мартенсит-пую структуру и максимальную износостойкость. Повышение со-держайия никеля более 4% приводит к снижению сопротивления изнашиванию, так как при охлаждении чугуна происходит фиксация значительных количеств аустенита.  [c.89]

Эффективность применения указанных технологических приемов для сглаживания электрохимической гетерогенности сварного соединения во многом зависит от способности основного металла и релаксации остаточных напряжений. В этом направлении представляются весьма перспективными малоуглеродистые стали мар-тенситного класса, обладающие высокой прочностью, пластичностью и ударной вязкостью, например, сталь 07ХЗГНМ (0,1% С 3,0% Сг 0,8—1,2% Ni 0,3—0,35% Мо). Малоуглеродистый мартенсит этой стали имеет тонкую субмикроструктуру, состоящую из пакетов параллельных пластин с высокой плотностью дислокаций, обеспечивающей высокие прочностные характеристики (о з = 1150 МПа, 00,2 = 900 МПа). Однако низкое содержание углерода (от 0,05 до 0,1%) обусловливает сохранение подвижности значительной доли дислокаций, образующихся в процессе у -> а-превращения, и облегчает релаксацию напряжений путем микропластических деформаций. Релаксации напряжений способствует высокая температура начала мартенситного превращения (480 °С и выше). Сталь имеет низкую критическую скорость закалки. Она закаливается с прокатного нагрева, сохраняя при этом высокие технологические свойства (б = 20%, =  [c.220]

Иначе обстоит дело при микроударном нагружении мартенсита. При таком виде воздействия мартенсит ведет себя как структура с высокой пластичностью и большой упрочняемостью [152]. Это обстоятельство авторы объясняют особенностями деформации перенасыщенного твердого раствора (каким является мартенсит), характеро.м приложения нагрузки и условиями деформации. Контактный способ приложения нагрузки также создает объемное напряженное состояние микроучастков. Таким образом, при ударном воздействии абразивных зерен сопротивление металла изнашиванию определяется свойством поверхностных слоев выдерживать многократное пластическое деформирование без разрушения.  [c.168]


Смотреть страницы где упоминается термин Мартенсит свойства : [c.315]    [c.264]    [c.327]    [c.494]    [c.188]    [c.219]    [c.281]    [c.166]    [c.3]    [c.78]    [c.115]    [c.117]    [c.214]    [c.36]    [c.63]    [c.80]    [c.20]   
Основы металловедения (1988) -- [ c.38 ]



ПОИСК



Изменение свойств сплавов при закалке на мартенсит

Мартенс

Мартенсит



© 2025 Mash-xxl.info Реклама на сайте