Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фабри — Перо полосы

Следует заметить, что для самых точных исследований контуров эталон Фабри и Перо действительно является одним из наиболее удачных и удобных приборов, непосредственно разрешающих сверхтонкую структуру линии. На основе теоретических соображений можно внести поправки на инструментальное расширение контура и получить истинный контур линии. Как уже упоминалось, для работы с эталоном Фабри и Перо необходимо выделить достаточно узкую спектральную область. Поэтому его обычно применяют в соединении с призменным спектрографом или монохроматором, располагая при этом эталон между коллиматором и призменной системой. Щель спектрографа вырезает из всей картины колец вертикальную полосу. Правильную установку эталона по отношению к оптической оси спектрографа определяют по положению щели относительно центра картины, как это показано на рис. 21. Регистрировать интерференционную картину от эталона Фабри и 38  [c.38]


Полосы Фабри и Перо могут получаться с одной пластинкой при интерференции прошедшего света и света, который испытал два внутренних отражения. В этом случае разность запаздывания между двумя волнами равна 2пс, где с представляет толщину пластинки, ап — ее показатель преломления. Постепенной нагрузкой или нагреванием можно изменять как п, так и с изменение п и с можно измерить с большой точностью подсчетом числа появляющихся (или исчезающих) полос. Применение этого способа к оптическому методу изучения напряжений будет дано в главе 111, 3.25.  [c.82]

Фабри — Перо полосы 234, 235, 237, 238, 243, 468 Фазовая нечувствительность квадратичного детектора 44, 74 --уха 74, 240, 241  [c.526]

Полосы пропускания интерферометра Фабри-Перо малой толщины, используемого в качестве интерференционного фильтра  [c.253]

Считая, что разрешение двух близких интерференционных колец наступает при 6т == к/п, где г. — ширина интерференционной полосы (см. рис. 5.55), получим в удовлетворительном приближении для разрешающей силы интерферометра Фабри—Перо [см. (5.68)]  [c.323]

Полосы разного порядка в эталоне Фабри — Перо имеют вид концентрических колец. 1) Где лежат полосы высших порядков—ближе к центру или дальше от него 2) Как зависит ширина полосы от порядка интерференции, длины волны, толщины эталона /г  [c.873]

Измерение степени турбулентности требует специальной сложной обработки доплеровского сигнала, который имеет вид импульсов типа вспышек с частотой fo (ввиду случайного распределения частиц в потоке и большого пространственного разрешения оптической схемы анемометров). Не касаясь специальных вопросов обработки доплеровских сигналов, заметим, что к настоящему времени созданы ЛДА с подобной обработкой сигналов и выводом информации на цифровое табло. Практически лазерные анемометры не имеют ограничений по измерению степени турбулентности (что особенно важно для исследований в проточных частях турбомашин), а верхний предел по измеряемым скоростям определяется только способом измерения доплеровской частоты. Так, для случая использования в ЛДА фотоприемника с полосой пропускания 250 мГц при угле сведения лучей 20° верхняя граница измеряемой скорости около 400 м-с . При использовании в ЛДА эталона Фабри—Перо этот диапазон может быть увеличен до 800—1000 м.с- 1,122]. В ЛРА с т=10 и )=400 мкм (А=0,02б мГц-с-м- ), разработанном в МЭИ [35], верхний предел измеряемой скорости составил 300 м-с . Заметим, что в этом варианте анемометра ограничение по скорости лимитируется полосой пропускания усилителя.  [c.55]


В Р. д. используются элементы с угл. дисперсией (дифракционные решётки, спектральные призмы) йли амплитудной селекцией спектра (интерферометры Фабри — Перо, резонансные отражатели и др.). В резонаторах, содержащих элементы с угл. дисперсией, эфф. полоса пропускания зависит от геометрии резонатора и расходимости генерируемого излучения и с Хорошей точностью оценивается ф-лой  [c.318]

Нелинейные оптические устройства обладают многими интересными свойствами. К ним относятся дифференциальное усиление и бистабильность (гистерезис), которые можно наблюдать, например, исследуя пропускание интерферометра Фабри — Перо, содержащего пары Na, облучаемые светом непрерывного лазера на кра- сителях [3]. Бистабильные устройства обычно работают в режиме больших мощностей, когда среда ведет себя нелинейно. Если нелинейность среды увеличивается за счет резонансных электронных переходов, то полоса оказывается очень узкой. В дальнейшем мы обсудим ряд электрооптических устройств с искусственно созданной нелинейностью, характеристики которых аналогичны оптическим устройствам с естественной нелинейностью. Обладая теми же нелинейными свойствами, они позволяют избежать ряд трудностей при решении задач, связанных с нелинейной природой.  [c.321]

Для измерения фаз применяется техника, основанная на анализе динамических интерферограмм. Схема экспериментальной установки, реализующей этот метод, изображена на рис. 6.34. Исследуемый импульс вводится в интерферометр Маха — Цандера, в одно из плеч которого помещен узкополосный спектральный фильтр (эталон Фабри — Перо). Ширина полосы пропускания фильтра выбрана меньше обратной длительности импульса, так что он играет роль узкополосного фильтра, формирующего опорный импульс. Интерференция опорного импульса с исследуемым, распространяющимся по другому плечу  [c.283]

Ширина полосы Аш при этом, согласно (2.40), определяется равенством А(о= ( /d) [ (1 —Rfp)Rf ], где Rfp — коэффициент отражения, а d — толщина базы эталона Фабри—Перо. Осуществляя для перехода к временному описанию обратное пре-  [c.156]

Путем наблюдения за интерференционными полосами проверяли когерентность света от разных колец и от различных частей одного кольца. Таким способом было установлено, что когерентные свойства света в кольцах аналогичны когерентным свойствам лазерного излучения в центральном пятне. Поэтому было высказано предположение, что кольца возникают из-за рассеяния лазерного света на оптических неоднородностях в самом кристалле. Следовательно, кольцевая картина аналогична той, которая возникает при анализе лазерного света с помощью внешнего эталона Фабри Перо.  [c.43]

Заслуживает внимания предложение использовать интерферометр Фабри—Перо в качестве фильтра. Располагая диафрагму в центральной зоне интерферограммы Фабри—Перо, можно уменьшить полосу пропускания такого фильтра до доли области дисперсии, определяющейся размером диафрагмы. Предельные возможности фильтра Фабри—Перо ограничены качеством пластин интерферометра и внутренними потерями интенсивности света, которые растут при увеличении разрешающей силы. Потери интенсивности можно уменьшить, используя сферический резонатор Фабри—Перо [29]. При помощи интерферометра Фабри — Перо со сферическими отражателями уже достигнута длина когерентности в 10 ж [30, 31], и возможно, что она будет доведена до 300 м [32].  [c.328]

В качестве эталона длин волн пользуются и полосами Эд-сона — Батлера [72]. Если пучок белого света проходит через интерферометр Фабри — Перо с расстоянием между зеркалами L, то, после того как свет проходит через спектроскоп, разрешается набор широких интерференционных полос, отделенных друг от друга спектральным интервалом (1/2L). Шкала, образованная такими полосами, калибруется по какой-нибудь стандартной линии.  [c.354]

Обычные спектральные методы во многих случаях непригодны или неудобны для измерения ширины линии излучения лазера. Ширину линии излучения тех лазеров, которые испускают свет в широкой полосе частот, например лазеров на стекле, активированном неодимом, на рубине и на арсениде галлия, оказалось возможным измерить при помош,и эталона Фабри— Перо с достаточно высоким спектральным разрешением. Практическая граница между линиями, ширину которых можно измерить прямыми (интерферометрическими) методами, и столь узкими линиями, ширину которых прямыми методами измерить невозможно, порядка 1 Мгц. Для линий с шириной, меньшей 1 Мгц, применяются методы гетеродинирования. Для измерения же ширины линий до килогерц в настоящее время часто применяются другие косвенные методы, основанные на измерении статистических характеристик лазерного шума.  [c.379]


Если область дисперсии эталона мала, то прежде чем измерять ширину отдельных компонент, необходимо отфильтровать нежелательные спектральные компоненты. Для этого можно взять полосовой фильтр или вспомогательный эталон Фабри— Перо с меньшим расстоянием между пластинами эталона. Аппаратная ширина, г. е. минимальная теоретическая ширина полосы, которая может быть разрешена (в предположении, что плоскости пластин строго параллельны и бесконечно протяженны), определяется выражением [11]  [c.380]

Нетрудно показать, что из-за дифракции на отверстии диаметром D минимально разрешаемая ширина полосы эталона Фабри—Перо ограничивается значением  [c.381]

Так, например, для эталона с nL=10 см, D=I,8 мм при длине волны 5000 А и при коэффициенте отражения, большем 97,6%, спектральное разрешение определяется главным образом дифракцией. Если учесть влияние несовершенств поверхностей пластин и дифракции, то становится очевидным, что получить бесконечное спектральное разрешение эталона Фабри — Перо невозможно, просто увеличивая отражательную способность пластин. Следовательно, необходимо с большой осторожностью относиться к данным, полученным с помощью эталона Фабри — Перо. В частности, почти никогда не удается получить теоретическую аппаратную ширину полосы, и формула (7.31) очень редко оказывается применимой, хотя в настоящее время легко получить диэлектрические покрытия с коэффициентом отрал е-ния свыше 99%.  [c.382]

Можно вычислить распределение интенсивности в интерференционной картине и резкость полос, которая выше, чем в эталоне Фабри — Перо.  [c.179]

Внутри пластины лучи света идут иод углом, близким к углу полного внутреннего отражения, но несколько меньшим его. После каждого отражения от наружной новерхности пластины большая часть света отразится обратно внутрь пластины, а небольшая доля выйдет наружу по обе ее стороны. Вышедшие из пластины лучи будут когерентными и образуют интерференционную картину, локализованную на бесконечности. Так же как и в интерферометре Фабри — Перо, здесь будут полосы равного наклона.  [c.206]

Многолучевая интерференция и многолучевой микроинтерферометр МИИ-И. Многолучевая интерференция возникает за счет многократного отражения когерентных пучков света в клинообраз-йой пластине по схеме Фабри и Перо (свет падает под углом <0 = 1-ьЗ ). При этом получение узких контрастных полос обусловливается тем, что при сложении N когерентных пучков образуется не по одному максимуму и минимуму освещенности (Как это имеет место при двухлучевой интерференции), а на М максимумов приходится Л —1 минимумов освещенности. Из макси-  [c.97]

Если луч проходит систему по косому направлению, вводимое отставание будет больше. Та.<им оЗразом при наблюдении поля через телескоп Т оно представляется покрытым рядами концентрических круговых полос, соответствуюш,их относительным запаздываниям на нечетное число длин в половину волны. По мере удаления друг от друга этих пластинок, эти о.<ружности расширяются, в то же время постепенно появляются новые о.фужности, сначала в виде темных пятен в центре, развертывающихся затем в кольца. Считая число новых колец, появляющихся таким образом при удлинении расстояния между пластин.<ами на х, можно получить очень хороший подсчет числа длин волн в 2х. Этим путем Фабри и Перо получили основные и весьма точные определения различных стандартных длин волн. Для получения  [c.82]

Затем опыт повторяется при прикрытых зеркалах F к G, так что сам образец применяется в качестве интерферометра Фабри и Перо, причем свет, отраженный от передней поверхности образца, интерферирует со светом, дважды пересекающим образец и отраженным от задней поверхности Здесь разность относительного отставания, введенного между верхним и нижним лучами, будет 2Д(/гс) = = 2сАп - - 2лДс и соответственно, если т число полос между верхней и нижней поверхностями бруса, то  [c.209]

Ловторные определения (библиографию см. в [95]) соотношения между длиной волны красной линии кадмия и метром были выполнены в целом ряде лабораторий по стандартизации таким же методом, как и метод Бенуа, Фабри и Перо или в принципе схожим с ним. ][4птересны эксперименты Сирса и Баррелла [96], так как в них сделаны прямые измерения длины волны в вакууме. Они воспользовались только тремя эталонами Фабри — Перо самый большой имел в длину немного больше метра, другие — приблизительно одну треть и одну девятую метра. Разделителями служили цилиндры из инвара с оптически плоскими хромированными торцами, к которым прижимались эталонные пластины. Эти соединения были герметизированы, и эталоны можно было эвакуировать. Было измерено число длин волн, укладывающееся в самом коротком эталоне. Измерения делались методом дробных частей порядка, а для сравнения эталонов друг с другом применялись полосы суперпозиции, описанные в и. 7.6.8. Самый большой эталон имел достаточную длину, чтобы в нем могла поместиться стальная концевая мера номинальной длиной в 1 м. Расстояние в длинах волн менаду полированными торцами концевой меры и отражающими поверхностями эталона определялось путем наблюдения в отраженном свете полос, локализованных в бесконечности. Таким способом была  [c.337]

В заключение остановимся на принципе действия интерференционных фильтров, получишпих за последние годы широкое распространение. Интерференционный фильтр — это устройство, позволяющее пропустить значительную часть светового потока в определенной узкой области длин волн. Ширина полосы пропускания Л/, обычно составляет несколько десятков ангстрем. Принцип действия подобного фильтра понятен, если представить себе интерферометр Фабри —Перо с очень ма- сьсм расстоянием I между пластинами.  [c.253]

Использование лазерного источника в спектроскопии позволило более качественно производить измерения рассеянного света. Так, высокостабилизированный Не—Ые-лазер с шириной полосы излучения меньше 100 Гц может использоваться как источник света и как генератор электромагнитных колебаний. Частотный сдвиг рассеянного света можно измерять либо при помощи интерферометра Фабри—Перо, либо спектрометром по методу биений. При этом могут быть измерены сдвиги от нескольких гГц до нескольких кГц и получена информация о времени релаксации молекул в жидких и полимерных растворах в диапазоне от 10 до 10 с.  [c.219]


Почти все селекторы имеют форму полосы пропускания, близкую к прямоугольной, и практически не влияют на характеристики тех мод, угловая расходамость излучения которых не превышает ширины этой полосы. Такие селекторы, очевидно, способны уменьшить значение расходимости лишь до значения, равного ширине полосы пропускания. Исключение составляет эталон Фабри—Перо, вносящий потери, квадратично зависящие от угла наклона в зоне максимума пропускания. Хотя эти потери Утя слабо наклоненных волн и невелики, однако легко могут оказаться больше дифракщюнных потерь соответствующих мод широкоапертурного резонатора. Поэтому с помощью данного селектора порой можно добиться расходимости, меньшей, чем ширина его полосы, однако эта ситуация отнюдь не является типичной.  [c.218]

Помеш,ение в резонатор частотного фильтра может радикально изменить ситуацию [6]. Авторы исследовали генерационные характеристики импульсного лазера на фосфатном стекле с активной синхронизацией мод и модуляцией добротности. В качестве фильтра использовался эталон Фабри — Перо толш,иной 0,25 мм с шириной полосы пропускания 15 см . Благодаря фазовой самомодуляции и ограничению полосы усиления длительность импульсов в цуге монотонно уменьшалась от 40 до 4 пс. Наивысшее спектральное качество достигалось в конце цуга.  [c.244]

Для сферического интерферометра Фабри-Перо справедливы основные характеристики плоского параллельного интерферометра (относительная ширина полосы, область дисперсии, контрастность и т. д.). Интерфенционная к тина в С( рическом интерферометре возникает в результате аберрационных искажений, вызванных отступлением реальных поверхностей о идеальных 11421.  [c.76]

Вместо рассмотренной в предыдущем разделе синхронизации мод при модуляции внутренних потерь или оптической длины резонатора синхронизация мод может осуществляться путем модуляции усиления. Для этого в резонатор лазера вводится накачка в виде непрерывной последовательности импульсов, генерируемых другим лазером с синхронизацией мод (см. рис. 5.8). Если длина резонатора лазера достаточно близка к длине резонатора лазера накачки или кратна ей, то при определенных условиях усиление оказывается модулированным с периодом, равным времени полного прохода резонатора. Как и при модуляции потерь, короткий импульс в этом случае формируется за промежуток времени, соответствующий максимальному усилению. Длительность этого импульса при оптимальных условиях может быть на два-три порядка короче длительности импульса накачки. Наибольший практический интерес представляет применение метода синхронной накачки в лазерах на красителях, так как в лазерах этого типа используется преимущественно оптическая накачка, а их линии усиления весьма широки (величина А(0з2/2л лежит в пределах от 10 до 10 Гц). Лазеры на красителях допускают в определенном диапазоне плавную перестройку частоты в области максимума спектра излучения. Это достигается введением в резонатор частотно-селек-тивного оптического фильтра, в качестве которого могут быть использованы, например, эталон Фабри—Перо, фильтр Лио или призма. Ширина спектра пропускания этих фильтров, однако, не должна быть слишком мала, так как ее сужение может вызвать существенное увеличение длительности импульсов. По указанным причинам значение лазеров на красителях с синхронной накачкой в технике генерации пикосекундных и субпи-косекундных импульсов в последние годы все больше возрастает. По сравнению с лазерами на красителях с пассивной синхронизацией мод, которым посвящена следующая глава, синхронно накачиваемые лазеры имеют следующее преимущество для перестройки частоты их излучения может быть использована полная спектральная ширина лазерного перехода, тогда как при пассивной синхронизации полоса перестройки дополнительно ограничивается спектром линии поглощения насыщающегося поглотителя.  [c.150]

Необходимо заботиться о том, чтобы ошибок не вызывали интерференционные эффекты, которые часто возникают в результате многократного отражения между почти параллельными поверхностями или внутри оптических пластин. Возможность ошибки возрастает при измерениях вне видимого спектрального диапазона, ибо здесь глаз не в состоянии помочь выявить экспериментальные аномалии. Типичный пример экспериментальной ситуации, при которой возможны ошибки, — измерения мош,ности в инфракрасном диапазоне Для измерения средней мощности пользуются радиационными термостолбиками, которые мало чувствительны к длине волны (см. гл. 4). Такие термостолбики обычно содержат много термоспаев, и при их градуировке должна измеряться средняя мош,ность плоской волны. Результаты можно однозначно интерпретировать только тогда, когда измеряемый пучок однороден. Допустим, что нам нужно измерить мощность непрерывно работающего инфракрасного лазера, величина которой превышает предельную мощность, допустимую для термостолбика. Мы должны применить ослабитель, чтобы уменьшить интенсивность пучка до подходящей величины. Ослабитель можно поместить либо прямо перед термостолбиком, либо около лазера. Обычно термостолбик ставят на расстоянии 3—15 м от лазера, с тем чтобы пятно пучка равномерно освещало его апертуру. Если же ослабитель высокого качества находится около лазера, то он может образовать интерферометр Фабри — Перо и создать в пучке интерференционные полосы. Тогда термостолбик будет освещаться волновым фронтом с периодической структурой и в результате при измерениях могут возникнуть серьезные ошибки (8 1). Во избежание этого ослабитель обычно помещают около термостолбика.  [c.32]

Недавно в литературе был описан интерферометр Конна, который представляет собой сканируюш,ий интерферометр Фабри— Перо со сферическими зеркалами [22]. Этот прибор особенно удобен для измерений спектра лазера, поскольку входное излучение должно быть согласовано с интерферометром в отношении размеров пучка и кривизны волнового фронта. Была получена спектральная разрешающая способность, равная 3 10 на длине волны 1 мк при расстоянии между зеркалами 50 см и коэффициенте отражения зеркал 99%. Это соответствует М й-нимально разрешимой полосе в 1 Мгц.  [c.389]

Поверхности пластины покрываются тонкими металлическими слоями с достаточно большой отражательной способностью, но частично пропускающие свет. В результате получается миниатюрный интерферометр Фабри—Перо, причем для выбранной длины волны 5/2 = л, sin (р/2) = 0. Следовательно, при достаточно высокой отражательной способности металлических слоев эта система действует как узкополосный фильтр. Типичная ширина полосы пропускания, определяемая на половине максимальной интенсивности, составляет около 20 нм, что для такой простой системы является хорошим показателем. Падение света предполагается нормальным к поверхности. Ширина полосы пропускания может уменьшаться примерно вдвое, если имеется интерференционньш максимум второго порядка. Однако в этом случае наряду с волной длины X будет пропущена и волна длины 2Х (см. также 29).  [c.179]

В фокальной плоЬкости линзы образуются интерференционные полосы, параллельные поверхности пластины. Обычно толщина d пластины бывает от 3 до 10 мм, а угол 0 близок к л/4. В результате порядок т интерференции оказывается очень высоким — десятки тысяч. Теория интерференции с пластинкой Люммера—Герке совершенно аналогична теории интерферометра Фабри — Перо.  [c.179]


В интерферометре Фабри—Перо дифракционные явления па входном отверстии прибора менее существенны, чем в предыду пщх случаях. Связано это с тем, что размеры входного отверстия здесь очень велики. Ширина главного дифракционного максимума в интерферометре Фабри—Перо составляет всего сотые доли расстояния между двумя соседними максимумами интерференции. Поэтому в интерфероАгетре Фабри—Перо наблюдаются те участки интерференционной картины, которые задаются направлением падения света. Для получения полной спстемы полос не-обходпдго, чтобы на интерферометр падало сразу множество плоских волн всех возможных направлений.  [c.217]


Смотреть страницы где упоминается термин Фабри — Перо полосы : [c.31]    [c.337]    [c.116]    [c.254]    [c.224]    [c.564]    [c.426]    [c.318]    [c.320]    [c.349]    [c.394]    [c.161]    [c.137]    [c.191]    [c.143]    [c.439]   
Волны (0) -- [ c.234 , c.235 , c.237 , c.238 , c.243 , c.468 ]



ПОИСК



Интерференционные полосы Фабри Перо

Перила

Перова

Рен (перо)

Фабри и Перо



© 2025 Mash-xxl.info Реклама на сайте