Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фотоны оптические

Инверсию в полупроводниках возможно получить и при возбуждении потоком фотонов — оптическое возбуждение. При этом применяются люминесцентные кристаллы. Под воздействием фотонов, энергия которых hv больше ширины запрещенной зоны, в полупроводнике происходит переход электронов из валентной зоны в зону проводимости с образованием электронно-дырочных пар. Наиболее целесообразно производить накачку в узком интервале частот, когда энергия кванта лишь немногим больше АИ7. В этом случае инверсия электронов и дырок образуется в основном между уровнями, залегающими у потолка валентной зоны и дна зоны проводимости.  [c.63]


Применим сначала это выражение к газу свободных электронов. Эта система имеет только одну энергетическую зону. Передача энергии при столкновении фотона оптического диапазона с электроном ничтожна  [c.76]

Как правило, у-излучение не является самостоятельным типом радиоактивности. Гамма-излучение сопровождает а- и Р-распады. Дочернее ядро ( 1.4.5. Г), возникшее при а- или р-распаде, обычно является возбужденным ( 1.4.2.4°). При переходе в нормальное или менее возбужденное энергетическое состояние ядро испускает у-фотон, подобно тому как атом, переходя из возбужденного состояния в нормальное, испускает фотон оптического диапазона ( 1.2.4.3°) или рентгеновского излучения ( .3.6.Г).  [c.483]

Взаимодействие фотонов с возбужденными атомами дает лавинообразные потоки фотонов в различных направлениях. Наличие торцовых зеркальных [юверхностей рубинового стержня приводит к тому что при многократном отражении усиливаются свободные световые колебания в направлении оси стержня рубина вследствие стимулирования возбужденными атомами. Спустя 0,5 мс более половины атомов хрома приходит в возбужденное состояние, и система становится неустойчивой. Вся запасенная энергия в стержне рубина одновременно высвобождается, и кристалл испускает ослепительный яркий красный свет. Лучи света имеют высокую направленность. Расходимость луча обычно не превышает О, Г. Системой оптических линз луч фокусируется на поверхности обрабатываемой заготовки (рис. 7.15).  [c.414]

Как было указано, Эйнштейн, развивая идею Планка, сделал второй шаг на пути развития квантовой теории, выдвинув новую гипотезу, согласно которой само электромагнитное излучение состоит из отдельных корпускул (квантов) — фотонов с энергией о = и импульсом р hv/ . Гипотеза Эйнштейна в дальнейшем была подтверждена многочисленными экспериментальными фактами и легла в основу объяснения ряда оптических явлений, с которыми не могла справиться волновая теория света.  [c.338]

Заканчивая это предельно краткое изучение свойств фотона, целесообразно сформулировать следующие общие соображения. Введение понятия фотона привело фактически к созданию новой корпускулярной теории света, хорошо объясняющей некоторые оптические явления, истолкование которых в рамках волновой теории было затруднительно, а иногда невозможно. В то же время при правильном описании явлений эта теория не приводит к противоречию с исходными положениями волновой оптики. В частности, можно описать явления на границе двух сред в терминах как волновой, так и корпускулярной оптики. Конечно, было бы грубой ошибкой отождествлять скорость электромагнитных волн и скорость корпускул и пытаться поставить какой-либо решающий опыт, позволяющий выбрать одну из двух дополняющих одна другую теорий для описания всех сложных оптических явлений. Следует учитывать, что волновая и корпускулярная картины — это классические крайности (пределы) квантово-ме-ханической сущности явления, полностью соответствующей дуализму материи.  [c.452]


Прежде чем переходить к описанию работы оптического квантового генератора, сделаем замечание о смысле принятого для него названия. Для формирования потока направленного излучения в активной среде используются процессы излучения атомов или молекул, квантовых систем, обладающих дискретным набором возможных значений энергии и испускающих кванты энергии — фотоны. Это определяет целесообразность применяемого термина оптический квантовый генератор , или, сокращенно, — ОКГ ). В радиотехнических ламповых генераторах, в которых используется движение электронов проводимости и частоты излучения низки, квантовые эффекты существенной роли не играют, и возможно классическое описание большинства происходящих в них явлений.  [c.779]

Общую картину процессов, происходящих при оптическом возбуждении молекул красителя, можно представить следующим образом. В результате поглощения фотона молекула из  [c.817]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]

С фотонами видимого света такие опыты затруднены, так как энергия этих фотонов мала. Однако в данном случае при очень слабых световых потоках можно осуществить опыты по наблюдению статистических отклонений от средних значений у основных оптических характеристик (освещенность, сила света и др.), происходящих со временем. Такие отклонения (флуктуации) могут иметь как волновую (классическую), так и корпускулярную (квантовую) природу. Причем свойства классических и квантовых флуктуаций существенно различаются между собой.  [c.164]

Самым простым является случай, когда заселен только наиболее глубокий уровень — основной, или нормальный, соответствующий минимальному значению энергии атомной системы. Посредством возбуждения система может быть переведена на более высокий уровень. Широко распространено оптическое возбуждение, т. е. возбуждение путем поглощения фотонов.  [c.226]

Важным случаем оптического возбуждения является возбуждение одного определенного уровня энергии Ещ атома газа из основного состояния 1 путем поглощения фотона к = Ет— ь Возбужденный атом может отдать свою энергию возбуждения двумя способами путем испускания фотона, т. е. при переходе с испусканием, и путем потери энергии при столкновении с другой частицей, т. е. при безызлучательном переходе. Если атом возвращается в основное состояние, испуская фотон hv той же частоты V, что и поглощенный фотон, то такое испускание называется резонансным.  [c.226]

Если Еп = Е , где , — энергия ионизации, то когда энергия суммы фотонов Nhv достигнет величины, превышающей произойдет ионизация атома, т. е. оптический электрон оторвется от атома. Это явление носит название многофотонной ионизации. Так, например, наблюдалась ионизация атома гелия (потенциал ионизации 24,58 эВ) в результате поглощения 21 фотона излучения неодимового лазера (5. = 1,06 мкм), В такого рода опытах применяется сфокусированное излучение мощных импульсных лазеров. При этом напряженность электрического поля составляет 10 —10 В/см. Если ионизация происходит в газе или конденсированном диэлектрике, то при очень большой плотности энергии может возникнуть искровой пробой среды электрическим полем излучения лазера.  [c.312]


АВТОР. Действительно, здесь свет взаимодействует с веществом молекулы и атомы поглощают и испускают фотоны. Однако, строго говоря, во всех оптических явлениях в той или иной форме происходит взаимодействие света и вещества, будь то отражение, преломление или рассеяние света. И это еще один аргумент в пользу важности изучения природы света.  [c.13]

Современные фотонные представления сформировались в первой четверти нашего столетия на основе исследований по тепловому излучению тел и оптическим спектрам атомов суш ественную роль сыграли при этом также эксперименты по фотоэффекту и эффекту Комптона.  [c.17]

Весьма интересна последняя фраза в этом высказывании. Для того чтобы происходило рассеяние корпускул друг на друге, необходимо допустить, что их масса не постоянна. На языке квантовой оптики это соответствует тому, что изменяется частота света. Такое явление действительно наблюдается при взаимодействии лазерных пучков в прозрачных средах, например в кристаллах, при определенных условиях. Оно относится к нелинейно-оптическим явлениям. При этом действительно происходит взаимодействие фотонов друг с другом (тогда как в вакууме или воздухе фотоны практически не взаимодействуют). Ну как же тут не вспомнить упоминавшееся ранее замечание Ломоносова о том, что в прозрачных твердых телах световые корпускулы обязательно должны взаимодействовать друг с другом  [c.23]

Бозонный характер статистики фотонов играет в оптических явлениях исключительно важную роль. Именно различием в статистических свойствах фотона и электрона объясняется, например, тот принципиальный факт, что фотонный коллектив при определенных условиях может описываться классическими волнами (электромагнитными волнами), тогда как с электронным коллективом никаких классических волн сопоставить нельзя.  [c.81]

Имея в виду прогресс современной оптики, сделаем два замечания. Во-первых, появились лазеры, генерирующие световые поля напряженностью до 10 —10 В/м. Это существенно упрочило позиции классических волновых представлений в оптическом диапазоне. Во-вторых, созданы детекторы, реагирующие фактически на отдельные фотоны. Это позволяет детектировать излучение предельно слабых источников света и исследовать корпускулярный (квантовый) характер оптических полей.  [c.85]

Во многих случаях можно рассматривать взаимодействие фотонов с атомами и молекулами вещества, как если бы последние были свободны или по крайней мере изолированы. Однако в тех случаях, когда квантово-оптические явления происходят в твердых телах, необходимо принимать во внимание электронные и другие коллективные движения в кристалле. Этим коллективным движениям сопоставляют своеобразные кванты , называемые квазичастицами или элементарными возбуждениями. Кристалл уподобляют газу таких квазичастиц. Квантово-оптические явления в твердых телах рассматривают, исходя из взаимодействия фотонов с указанными квазичастицами.  [c.129]

В отличие от металлов полупроводники имеют довольно сложный спектр оптического поглощения. В металле фотоны поглощаются электронами проводимости, совершающими переходы внутри энергетической зоны. Поэтому спектр поглощения металла непрерывен металлы поглощают излучение любой частоты. В полупроводниках фотоны могут поглощаться электронами валентной зоны (с последующим переходом в зону проводимости или на примесные уровни, находящиеся внутри запрещенной зоны), электронами на примесных уровнях (с переходом в зону проводимости или на другие примесные уровни), электронами проводимости (с последующими внутризонными переходами). Переходам электронов из валентной зоны в зону проводимости отвечает так называемая полоса собственного поглощения полупроводника она характеризуется наиболее высоким коэ-ф-фициентом поглощения. Частота о) р, соответствующая  [c.164]

Оптика линейная и нелинейная нелинейно-оптические явления. Световые пучки в вакууме или в воздухе проходят один сквозь другой, не оказывая друг на друга какого-либо возмущения. В этом проявляется принцип суперпозиции световых волн, из которого следует линейность уравнений классической оптики. На фотонном языке суперпозиция световых волн означает, что фотоны непосредственно друг с другом не взаимодействуют.  [c.211]

Оптические переходы различной фотонной кратности.  [c.219]

С процессами взаимодействия света с веществом сопоставляют определенные квантовые переходы частиц вещества (атомов, ионов, молекул). Эти переходы называют оптическими, так как каждый из них сопровождается рождением или уничтожением, а возможно, одновременно и рождением, и уничтожением некоторого числа фотонов. Наряду с оптическими существуют также неоптические переходы они происходят без участия фотонов, например при столкновениях частиц.  [c.219]

Если в оптическом переходе участвует один фотон, то такой переход (такой процесс взаимодействия излучения с веществом) называют однофотонным. Однофотонный переход сопровождается либо рождением (испусканием), либо уничтожением (поглощением) фотона, причем испускание фотона может быть либо спонтанным, либо вынужденным. До сих пор мы имели дело только с однофотонными переходами (однофотонными процессами). Они определяют свойства теплового излучения и оптические спектры вещества, лежат в основе как фотоэлектрических, так и люминесцентных явлений. С однофотонными процессами связано и нелинейно-оптическое явление просветления среды.  [c.219]

Многофотонное поглощение может проявляться весьма разнообразно. Если, например, вещество облучать светом, в составе которого есть спектральные компоненты с частотами и oJo, то может произойти поглощение двух фотонов и A oj при условии, что 0 1 -f U2 = um . Отметим также, что в результате поглощения многих фотонов оптический электрон может также оторваться от атома многофотонная ионизация, Г. С. Воронов, Н. Б. Делоне, 1965 г.). Так, например, наблюдалась ионизация атома гелия (потенциал ионизации 24,58 эВ) в результате поглощения 21 фотона излучения неодимового лазера (X = 1,06 мкм). В такого рода опытах применяется импульсное сфокусированное излучение мощных лазеров, освещенность достигает значений 10 — 10 Вт/см , а напряженность электрического поля составляет 10 — 10 В/см.  [c.571]


Наряду с быстрым развитием технических средств исследования свойств фотонов оптического диапазона большие успехи в этом направлении имеются в последние годы и в радиодиапазоне. Энергия фотонов радиодиапазона исключительно мала, намного меньше, чем тепловые флуктуации энергии, равные по порядку величины кТ (Т —шумовая температура в большинстве усилителей она принимается равной комнатной температуре). Следовательно, до сих пор в радиотехнике не было большой необходимости учитывать корпускулярную структуру поля. Однако недавнее изобретение малошумящих усилителей, использующих явления парамагнитного резонанса, до такой степени снизило шумовую температуру регистрирующих устройств, что при дальнейшем их совершенствовании окажется вполне возможной регистрация отдельных фотонов. Таким образом, даже в диапазоне СВЧ приходится в настоящее время учитывать корпускулярную структуру поля. Исследование корпускулярной природы электромагнитных полей представляет интерес еще и потому, что она ставит принципиальные ограничения при передаче информации с помощью этих полей. В данных лекциях мы не будем касаться вопросов теории информации, но сделаем некоторые замечания, относящиеся к теории шумов. Теория шумов является классической формой теории флуктуаций электромагнитного поля и, вполне естественно, связана с теорией квантовых флуктуаций электромагнитного поля. Все перечисленные выше вопросы составляют один общий раздел, который можно назвать статистикой фотонов. В него входит также теория когерентности, которая ставит сввей целью нахождение удобных способов классификации статистического поведения полей.  [c.4]

Шум и другие свойства фотоумножителей, существенные для оптической термометрии, были широко исследованы в работах [18—20, 22, 23, 29]. Выбор способа работы фотоумножителей методом постоянного тока [44] или методом счета фотонов в основном зависит от вкуса потребителя. Не существует никаких заметных преимуществ одного метода перед другим. В обоих случаях необходимо, чтобы фотоумножителю не мешали избыток шума, усталость или нелинейность. Метод счета фотонов имеет, однако, преимущество в том, что зависимость амплитуды сигнала от усиления меньще и ослабляется эффект утечек тока внутри фотоумножителя или около его цоколя. Кроме того, сигнал имеет цифровую форму, которая облегчает прямую связь с ручной цифровой обработкой и с контрольно-компьютерной системой. В обоих методах — на постоянном токе и методе счета фотонов — критичным является контроль температуры фотоумножителя, так как спектральная чувствительность (особенно вблизи длинноволновой границы), а также темновой ток зависят от температуры. Фотоумножители с чувствительным в красной области спектра фотокатодом 8-20, такие, как ЕМ1-9558 (щтырьковая замена для ЕМ1-9658 фотоумножителя 8-20), для понижения темнового тока должны работать при температуре примерно —25 °С. Применение чувствительного в красной области фотокатода позволяет работать с длинами волн примерно до 800 нм, хотя если прибор предназначен исключительно для воспроизведения МПТШ-68 выше точки золота, такие длины волн требуются редко.  [c.377]

Соотношения (7.28), (7.29) имеют непосредственное отношение к кругу оптических проблем. Достаточно указать, что без их использования нельзя сформулировать понятие фотона --своеобразной частицы, И1 рающей основную роль и к антовой оптике (см. 8.5).  [c.382]

Если энергия пролетающего фотона окажется достаточной, то он может выбить электрон из занимаемого им слоя и перевести его в любое из незаполненных связанных состояний или совсем удалить из атома. Фотоны малой энергии способны выбить из атома лишь оптические электроны, обладающие малой энергией связи. Фотоны большой энергии (7-фотопы) могут выбить электроны из более глубоких электронных слоев. Поэтому когда энергия 7-фотона достигает величины энергии связи электронов для какой-либо оболочки, то наблюдается резкий скачок поглощения фотонов в веществе. На рисунке 3, а изображена зависимость коэф( )ициента  [c.32]

Законы фотоэффекта, изложенные в данном и предыдущем параграфах, были установлены для сравнительно кебольщих интенсивностей света. Интерпретация фотоэффекта, основанная на квантовых представлениях, связывает освобождение электрона с передачей ему энергии одного фотона падающего света. Выше мы убедились в том, что в случае мощного света оптический электрон атомов и молекул может приобрести энергию нескольких фотонов (многофотонные поглощение и ионизация, см. 157). Аналогичное явление было обнаружено и по отношению к свободным электронам металлов (Фаркаш с сотр., 1967 г.).  [c.646]

Для метода оптического возбуждения существенно использование не менее трех энергетических уровнений атома (см. рис. 40.5). Важно также, чтобы уровень был долгоживущим (в трехуровневой системе), а уровни Ез — широкими. В самом деле, при использовании только двух энергетических уровней невозможно создать их стационарную инверсную заселенность за счет оптического возбуждения. Нарастание плотности потока возбуждающего излучения будет увеличивать и число актов поглощения фотонов, и число актов их индуцированного излучения. В результате даже при бесконечной мощности излучения заселенности энергетических уровней станут всего лишь одинаковыми, и их инверсная заселенность не будет достигнута. В том, что разность заселенностей — N2 не может изменить знак, легко убедиться при помощи общего выражения (224.3) для этой величины.  [c.791]

Фотоны. Гипотеза Эйнштейна о существовании фотонов встретила, как мы уже знаем, сильные возражения. Это и не удивительно, ибо ряд явлений (интерференция, дифракция) нашел объяснение в волновой теории света. л]аализу подвергалось и само соотношение Эйнштейна E=hv. О какой частоте колебаний идет речь, если свет состоит из частиц Как можно связывать энергию и частоту Во шы, набегающие на морской берег с одной и той же частотой, приносят разную энергию в зависимости от силы шторма. Лишь автор гипотезы А. Эйнштейн ни на секунду не сомневался в том, что свет действительно обладает и корпускулярными, и волновыми свойствами, имеет двойственную кор-пускулярно-волновую природу. Глубоко аргументированно он пишет Волновая теория света... прекрасно оправдывается при описании чисто оптич хких явлений и, вероятно, едва ли будет заменена какой-либо иной теорией. Но все же не следует забывать, что оптические наблюдения относятся не к мгновенным, а средним по времени величинам. Может оказаться, что теория света придет в противоречие с опытом, когда ее будут привлекать к явлениям возникновения и превращения света [84].  [c.159]

После изложенных соображений, касающихся существа предмета (квантовой оптики), обратимся к данному учебному пособию. Оно состоит из четырех частей 1. Развитие фотонных представлений. 2. Физика микрообъектов. 3. Квантовооптические явления. 4. Теоретические основы квантовой оптики. В первой части на основе ставших классическими работ Планка, Бора, Эйнштейна рассматриваются рождение и становление квантовой теории света, излагаются свойства фотона и фотонных ансамблей, демонстрируется переход от волновых представлений к квантовым. Во второй части анализируются некоторые принципиальные вопросы квантовой физики это позволяет объяснить интерференционные эффекты на корпускулярном языке. В третьей части приводятся необходимые сведения из физики твердого тела и затем обстоятельно рассматриваются три группы оптических явлений фотоэлектрические, люминесцентные, нелинейно-оптические эти явления иногда объединяют термином квантово-оптические . Вопросы, излагаемые в указанных трех частях пособия, составляют содержание раздела Квантовая природа света ,  [c.5]


Во-первых, фотоны непосредственно не взаимодействуют друг с другом один поток фотонов свободно проходит сквозь другой поток. Равновесие в фотонном газе устанавливается лишь благодаря наличию других частиц, взаимодействуя с которыми фотоны рождаются либо уничтолоются. Так, равновесное тепловое излучение в полости возникает благодаря взаимодействию излучения со стенками полости. Взаимодействия фотонов возможны только в веществе (нелинейно-оптические явления).  [c.83]

Используя фотонные представленая, рассмотрим в данной части книги три группы явлений взаимодействия света с веществом фотоэлектрические, люминесцентные, нелинейно-оптические. Для объяснения физики этих явлений фотонные представления оказываются принципиально вазкными, поэтому указанные явления часто объединяют термином твантово-оптические .  [c.129]

Поляритоны. Как видно из рис. 6.6, фотоны с энергией не выше примерно 0,01 эВ и длинноволновые оптические фононы с волновым вектором порядка 10 см оказываются близкими по своим характеристикам — энергии и модулю импульса. Между такими фононами и фотонами возникает взаимодействие, в результате которого в кристалле рождаются новые квазичастицы — поляритоны. Поля-ритон можно рассматривать как своеобразную кооперацию фотона и оптического фонона. Подобная кооперация возможна также между фотонам и экситоном при условии  [c.154]

Внешним фотоэффектом или, иначе, фотоэлектронной эмиссией называют испускание электронов веществом, про-исходяш,ее под действием электромагнитного излучения. Длина волны излучения должна находиться в диапазоне значений примерно от 10 до 10 м этот диапазон включает в себя оптическое излучение (без инфракрасной части спектра) и рентгеновское излучение. Энергия фотона в указанном диапазоне изменяется от 1 до 10 эВ (1 эВ = 1,6-Ю" Дж). Вещество может находиться в разных агрегатных состояниях — твердом, жидком, газообразном. В последнем случае используют термин фотоионизадия газа . Наиболее интересен в практическом отношении внеш-  [c.155]

Фотоэффект, эффект Комптона, рождение электронно-позитронных пар. Предположим, что через вещество распространяется монохроматический пучок фотонов. Энергию фотонов будем варьировать в широком интервале от оптического диапазона к рентгеновскому и далее — к -у-излу-чению. При прохождении через вещество интенсивность фотонного пучка будет уменьшаться за счет различных процессов фотон-электронного взаимодействия, приводящих к поглощению или рассеянию фотонов. Не будем принимать во внимание резонансные процессы взаимодействия излучения с веществом. Тогда остаются три процесса, приводящие к ослаблению фотонного пучка фотоэффект (фотоны поглощаются электронами), эффект Комптона (фотоны рассеиваются на электронах), рождение электроннв-позшп-  [c.157]

Важной характеристикой полупроводникового материала является квантовый выход внутреннего фотоэффекта — число оптически генерируемых носителей заряда, приходящееся на один поглощенный фотон. Обозначим это число т). Различают квантовый выход для электронов проводимости (г] ) и дырок (т) ,). В беспримесном полупроводнике Tins ll/.-  [c.176]

Выразим плотность светового потока S через число фотонов N, поглощаемых в едюшце объема полупроводника в единицу времени. Число фотонов, падающих в единицу времени на единичную поверхность, есть 5//гоз. Из них не отразятся от поверхности S (1—R) h o фотонов, где R — коэффициент отражения света. Умножив 5(1—на а, где а — линейный коэффициент оптического поглощения (он имеет размерность обратной длины), мы и получим величину N. Таким образом, iV=S(l—R)a ha) и, следовательно,  [c.178]

Теперь обратимся к многофотонным переходам (многофотонным процессам), так как именно они являются основой многих нелинейно-оптических явлений. Переход или процесс называют многофотонным, если в нем участвуют два фотона или более. Различают двухфотонные, трехфотонные, четырехфотонные и т. д. переходы (процессы).  [c.220]


Смотреть страницы где упоминается термин Фотоны оптические : [c.220]    [c.284]    [c.165]    [c.17]    [c.462]    [c.2]    [c.5]    [c.6]    [c.136]    [c.138]   
Теория твёрдого тела (0) -- [ c.43 ]



ПОИСК



Фотонное эхо

Фотоны



© 2025 Mash-xxl.info Реклама на сайте