Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовая коррозия стали и сплавы

Кроме основных компонентов (железа и углерода), в сталях и чугунах присутствуют и другие элементы в виде примесей или легирующих добавок. Если примесей или добавок менее 1 %, то они практически не оказывают влияния на газовую коррозию сталей и сплавов.  [c.17]

В настоящем разделе приведены свойства материалов в воздушной атмосфере и для некоторых марок сталей в вакууме. В таблицах и на графиках представлены механические, жаропрочные, физические свойства и глубина газовой коррозии сталей и сплавов в зависимости от температуры.  [c.86]


Газовая коррозия стали и сплавы 916, 917, 918  [c.1192]

Коррозия сталей и сплавов в газовой среде  [c.82]

Так, например, выбор сплавов для реактивных двигателей определяется рабочими температурами деталей, нагрузками, которые они воспринимают, и длительностью работы. Для работы при температурах до 300 С (когда у сталей еще не наблюдается явления ползучести) применяют обычные конструкционные стали. В интервале температур 300—500 С используют так называемые теплостойкие стали, сохраняющие при этих температурах свою прочность и сопротивляющиеся газовой коррозии. Для работы при температурах свыше 600 С применяют жаропрочные и жаростойкие стали и сплавы. Причем до 650 С используют высоколегированные сложные стали аустенитного типа, а свыше 650° С — сложные сплавы на основе N1, Со и Ре.  [c.197]

Жаростойкость (окалиностойкость) — это высокая стойкость сталей и сплавов к окислению при повышенных температурах, выражающаяся в сопротивляемости деталей газовой коррозии.  [c.197]

Устойчивость сталей и сплавов против коррозии в газовых средах при высоких температурах зависит от следующих факторов  [c.82]

Алитирование применяют для повышения стойкости деталей против газовой коррозии в водяном паре, на воздухе, в сероводороде и в топочных газах при повышенных и высоких температурах. Алитированию подвергают малоуглеродистую нелегированную и легированную сталь и сплавы, включая жаропрочные сплавы на никелевой основе.  [c.119]

КОРРОЗИЯ ЖАРОПРОЧНЫХ СТАЛЕЙ И СПЛАВОВ В ГАЗОВЫХ СРЕДАХ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ И МЕРЫ БОРЬБЫ С НЕЮ  [c.223]

Из всех легирующих элементов наибольшее применение находит хром, который повышает твердость, прочность стали. Высокохромистые стали устойчивы против окисления и коррозии, обладают повышенным сопротивлением износу и истиранию. Наиболее широко хром применяется в сочетании с никелем. Это коррозионно-стойкие стали, содержащие 18% Сг и 8—10% Ni. Жаропрочные стали и сплавы с высоким содержанием хрома получили применение для изготовления деталей газовых турбин и реактивных двигателей.  [c.240]

Жаростойкие стали и сплавы получают на базе системы Fe + Сг + Ni с небольшим количеством кремния. Основным потребительским свойством этих сталей является температура эксплуатации, которая должна быть более 550°С. Жаростойкие стали устойчивы против газовой коррозии до 900...1200°С  [c.174]


Аустенитные стали и сплавы работают в условиях самых различных температур, нагрузок и сред. Поэтому и к сварным соединениям этих сталей и сплавов предъявляются самые разнообразные требования, в зависимости от назначения сварной конструкции. Получение заданных механических свойств, требуемой жаропрочности, стойкости сварных швов против жидкостной или газовой коррозии определяется, естественно, прежде всего композицией шва, его структурой и термической обработкой. Но очень многое зависит и от технологии и техники сварки.  [c.230]

Изучение газовой коррозии металлов и нержавеющих сталей и сплавов в кислороде, углекислом газе, парах воды и сернистом газе при высоких температурах проведено еще Гадфильдом [747], что показано на рис. 357.  [c.668]

Жаростойкость характеризует сопротивление металлов и силавов газовой коррозии при высоких температурах Стали и сплавы, предназначенные для работы при повышенных и высоких температурах, должны, следовательно, обладать не только требуемой жаропрочностью, но и иметь достаточное сопротивление химическому воздействию газовой среды (жаростойкость) в течение заданного ресурса эксплуатации  [c.291]

В первой статье сборника рассматривается целесообразность использования понятия контролирующего фактора для характеристики механизма защитного действия и систематизации различных видов антикоррозионной защиты. Остальные работы сборника посвящены конкретным вопросам экспериментального исследования процессов коррозии и защиты металлических систем. В сборнике нашли отражение такие важные разделы, как исследование газовой коррозии при термообработке сплавов, коррозии и защиты металлов при травлении в кислотах, кислотостойкости металлов при повышенных температурах, коррозии нового металлического конструкционного материала — титана, его сплавов, сплавов ниобия с танталом и новые исследования по межкристаллитной коррозии нержавеющих сталей. В сборнике помещены последние работы по исследованию коррозионной усталости сталей и по коррозии и защите в некоторых производствах химической промышленности. Цель сборника — на основе современных методов исследования и имеющихся научных достижений указать некоторые новые пути и дать вполне определенные рекомендации нашей промышленности по борьбе с коррозионным разрушением.  [c.3]

Вероятно, в этом случае помимо сопротивления сталей и сплавов газовой коррозии имеют значение высокотемпературные процессы лимитированного химического взаимодействия покрытий с металлической подложкой. В частности, образование промежуточного слоя, который выполняет также защитные функции.  [c.128]

В состав жаростойких сплавов вводят хром, алюминий и кремний, которые увеличивают сопротивляемость стали воздействию окислительных газов (газовой коррозии) при высоких температурах. Действие этих элементов основано на образовании тонких, плотных окисных пленок на поверхности стали и сплавов, защищающих основной металл от окисления.  [c.152]

Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные обладают особыми свойствами. Согласно ГОСТ 5632—72 к этой группе относятся стали и сплавы на железной, железоникелевой и никелевой основах, предназначенные для работы в коррозионноактивных средах и при высоких температурах. В зависимости от основных свойств эти стали и сплавы подразделяют на группы первая — коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против различных видов коррозии вторая — жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550° С, работающие в ненагруженном или слабонагруженном состоянии третья — жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.  [c.26]


Алитирование (алюминирование) — диффузионный процесс поверхностного насыщения стали и сплавов алюминием, придающий им повышенную жаростойкость и коррозионную стойкость. Его применяют также с целью дополнительного повышения сопротивления газовой коррозии и эрозии изделий из углеродистой стали и некоторых жаропрочных сталей.  [c.10]

Жаростойкие стали и сплавы в течение длительного времени способны выдерживать высокие температуры без образования на поверхности окалины. Для достижения этих свойств в состав металла вводят хром, алюминий и кремний, которые увеличивают сопротивляемость стали воздействию окислительных газов (газовой коррозии) при высоких температурах. Действие этих элементов основано на образовании тонких, плотных окисных пленок на поверхности, стали и сплавов, защищающих основной металл от окисления.  [c.97]

Коррозионностойкие (нержавеющие) стали обладают стойкостью против электрохимической коррозии (кислотной, щелочной, солевой, атмосферной, почвенной, морской и др.). Жаростойкие (окалиностойкие) стали и сплавы, работающие в ненагруженном или слабонагруженном состоянии, обладают стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550° С. Жаропрочные стали и сплавы обладают достаточной окалиностойкостью и определенное время могут работать в нагруженном состоянии при высоких температурах. Основной характеристикой качества этих сталей и сплавов является химический состав.  [c.270]

К окалиностойким (жаростойким, огнестойким) сталям и сплавам предъявляется требование сопротивляться окислению (химическому разрушению) поверхности при воздействии высоких температур, происходящему вследствие газовой коррозии.  [c.313]

Представляет интерес взаимодействие электролитических хромовых покрытий с пятиокисью ванадия (табл. 56). Последняя в значительных количествах содержится в золе некоторых минеральных топлив. Пятиокись ванадия способствует ускорению газовой коррозии жаростойких сталей и сплавов.  [c.138]

Деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основе по ГОСТ 5632—72 подразделяются на три группы I — коррозионностойкие (нержавеющие) стали, стойкие против электрохимической коррозии (атмосферной, щелочной, кислотной, солевой и др.) II — жаростойкие (окалиностойкие) стали и сплавы, стойкие против химического разрушения поверхности в газовых средах при температурах выше 550° С, работающие в ненагруженном или слабонагружен-ном состоянии III — жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной окалиностойкостью.  [c.47]

Ю. И. Казеннова, ванадий вызывает точечную газовую коррозию сварных швов стали типа 18-8 даже при 650—700° С. В литературе, посвященной окали ностой кости высоколегированных сталей и сплавов, также указывается на отрицательное действие ванадия. Так, например, приводятся данные о том, что присутствие пятиокиси ванадия в газовой среде вызывает при 750° С чрезвычайно сильную газовую коррозию аустенитных сталей. Так, например, потери веса стали 25-20 за 20 ч составили около 20 кПсм . Указывают, что сплавы, легированные молибденом, вольфрамом и ванадием, при контактировании с газовой средой, содержащей пары окислов этих элементов, окисляются очень быстро. Особенно энергичное действие оказывают окислы ванадия. Хромистая нержавеющая сталь, содержащая 2% V, окисляется при 870—900° С вдесятеро быстрее, чем обычная нелегированная углеродистая сталь. Аустенитные стали предлагают защищать от газовой коррозии в присутствии окислов ванадия силицированием, их поверхности. Проводились испытания литых образцов хромоникелевых аустенитных сталей на газовую коррозию при 800—1000° С. Установлено, что наилучшим является сплав типа 28 Сг—9Ni. При более высоком содержании никеля скорость коррозии в среде, содержащей серу, возрастает. Кремний и алюминий уменьшают скорость коррозии, а молибден и ванадий  [c.287]

Имеются неопровержимые данные об ускоренной газовой коррозии сварных соединений жаропрочных сталей и сплавов вследствие наличия на поверхности шва или основного металла остат-  [c.344]

Вводить в сплавы специальные легирующие элементы (хром, никель, алюминий, кремний), которые сообщают материалу высокое сопротивление газовой коррозии или окалиностойкости. Поэтому все 01 алиностойкие и жаропрочные стали и сплавы в том  [c.663]

Состав жаропрочных сталей и сплавов должен обеспечи вать высокое сопротивление ползучести и газовой коррозии с учетом условий работы материала в течение заданного срока службы  [c.295]

Основные методы защиты от газовой коррозии в окислительных средах применение сталей и сплавов с высокой стойкостью при заданных параметрах эксплуатации защитные покрытия, наносимые термодиффузионным путем (алитирование, хромирование, силицирова-ние, комплексное насыщение жаростойкими элементами), плаз.менным напылением, электронно-лучевым методом и др. введение в рабочую среду ингибиторов, затрудняющих процессы газовой коррозии конструктивные методы (снижение рабочей температуры поверхности детали, уменьшение скорости движения среды и др.) технологические методы (повышение чистоты поверхности деталей, применение термической обработки для создания тонких пленок, препятствующих коррозионному процессу, и др.).  [c.251]

Основные методы защиты от газовой коррозии в окислительных средах применение сталей и сплавов с высокой окалиностой-костью при заданных параметрах эксплуатации защитные покрытия, наносимые термодиффузионным путем (алитирование, хромирование, силицирование, комплексное насыщение жаростойкими элементами), плазменным напылением, электронно-лучевым  [c.362]


Перевод книги, изданной Научным центром яаерной энергии, содержит доклады 3-го французского коллоквиума металлургов, отражающие новейшие исследования вопросов окисления металлов. Делается попытка создать общую теорию окисления металлов. Рассматриваются механизм диффузии и газовой коррозии, кор розиоиностойкие сплавы при высокой темлературе, восяла.меняемость. магния и урана в различных газовых атмосферах, корроз.ия нержавеющих сталей, коррозия в. морской воде и другие вопросы.  [c.4]

Известно, что коррозия котельного металла отсутствует, если соприкасающаяся с поверхностью металла вода или пленка влаги не содержит кислорода. В этом случае коррозия стали и медных сплавов невозможна при любом солевом составе воды, если только последняя не обладает кислой реакцией, что, разумеется, невозможно в условиях работы паровых котлов. Естественно, что для этого требуется практически полное отсутствие кислорода в паровой или газовой фазе внутри котлоагрегата. Последнее может быть обеспечено путемпостоянногоподдержаниявкотлепослепрекра-щения работы топки избыточного давления (парового или гидравлического) или же путем обескислороживания проникающего в котел воздуха.  [c.397]

В емкости загрязненного растворителя в газовой фазе коррозия сталей и меди выше, чем на границе фаз и в жидкой фазе. Здесь, так же, как и в средах разлагателя остатков катализатора и емкости загрязненного промывного раствора, титан ВТ 1-0 и сплавы марок Н70МФ, ХН65МВ обладают высокой коррозионной стойкостью.  [c.260]

Жаростойкие и жаропрочные стали и сплавы. К жаростойким (окалиностойким) относят стали и сплавы, обладаюш,ие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С и работающие в ненагруженном или сла-бонагруженном состоянии. При высокой температуре в условиях эксплуатации в среде нагретого воздуха в продуктах сгорания топлива происходит окисление стали (газовая коррозия). На поверхности стали образуется сначала тонкая пленка окислов, которая с течением времени увеличивается, и образуется окалина.  [c.92]

Высоколегированная сталь и сплавы коррозионно стойкие, жаростойкие и жаропрочные широко применяются в промышленности. К высоколегированным отнесены стали, содержащие один или несколько легирующих элементов в количестве 10—55%. К высоколегированным отнесены сплавы, содержащие никеля более 55 % или железа и никеля более 65 %, остальное—другие элементы. Эти стали и сплавы разделяются на три группы коррозионно-стойкие (нержавеющие) против химической, электрической, межкристаллитной коррозии жаростойкие (окалиностойкие), устойчивые против химического разрушения поверхности при температуре более 550 °С в газовых средах, работающие в ненагруженном или слабона-груженном состоянии жаропрочные, имеющие высокую жаростойкость и способные работать в нагруженном состоянии в течение определенного времени прн температуре 1000 °С и более. Стали подразделяются по структуре на классы мартенситный, мартенситно-ферритный, ферритный, аустенитно-мартенситный, аустенитно-ферритный и аустенитный.  [c.213]

Если учесть, что электропечестроение потребляет около 50 000 т черных и цветных металлов в год, то нетрудно подсчитать потери за счет коррозии, причем около 10—127о этого количества составляют дорогие высоколегированные стали и сплавы, содержащие дефицитный никель. Одним из наиболее эффективных способов уменьшения этих потерь является применение различных защитных покрытий, препятствующих атмосферной, газовой и другим видам коррозии металлов и сплавов.  [c.3]

К газовой коррозии можно отнести коррозию металлов и сплавов при высоких температурах в водяном паре. Железо и низколешроваиные стали в перегретом паре при 600°С окисляются в два раза сильнее, чем в нагретом воздухе. Коррозия металлов при высоких температурах наблюдается и в атмосфере технических нейтральных газов, если они содержат остатки кислорода, па-ро1в воды и углекислого газа.  [c.27]


Смотреть страницы где упоминается термин Газовая коррозия стали и сплавы : [c.185]    [c.86]    [c.660]    [c.389]    [c.54]    [c.295]    [c.2]    [c.117]    [c.129]    [c.139]    [c.360]    [c.176]    [c.155]   
Металловедение и термическая обработка (1956) -- [ c.916 , c.917 , c.918 ]



ПОИСК



Коррозия газовая

Коррозия и сплавы

Стали и сплавы



© 2025 Mash-xxl.info Реклама на сайте