Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитные Механические свойства

ЧИЛИ развитие совершенно новые методы исследования процессов переноса, в частности, теория протекания, или перколяции, которая вызвала появление сотен статей и стимулировала прогресс ряда направлений физики твердого тела. Появилась возможность подняться на новый уровень обобщения и предложить метод, позволяющий с единых позиций анализировать не только тепло- и электропроводность неоднородных материалов, но и диффузионные, магнитные, механические свойства в широком диапазоне изменения температур, в условиях наложения различных физических полей, при фазовых переходах и т. д. Все это и составляет содержание предлагаемой книги, в которой обобщены результаты исследований процессов переноса, проведенных сотрудниками проблемной лаборатории теплофизики Ленинградского института точной механики и оптики. Авторы надеются, что им удалось в ка-кой-то степени уменьшить информационное перенасыщение в рассматриваемой области, что и составляет одну из задач науки.  [c.4]


В зависимости от характера службы детали конструкции, к ее материалу предъявляются различные требования в отношении магнитных, электрических, химических и механических свойств.  [c.215]

В зависимости от назначения детали машины, аппарата и т. п, и условий ее работы к материалу, из которого она выполнена, предъявляются различные требования в отношении механических, химических, электрических и магнитных свойств. В курсе сопротивления материалов нас будут интересовать механические свойства материалов и некоторые физические константы ( , х, G).  [c.195]

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношению электромагнитных и электростатических единиц силы тока второй, не менее важный вывод гласил, что показатель преломления электромагнитных волн равняется У ер, где е — диэлектрическая, ар — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теории никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла п = Уе х е (ибо р. близко к 1) выполняется достаточно хорошо  [c.539]

Перспективность использования аморфных металлических сплавов определяется их возможной большей технологичностью и возможностью получения материалов с новыми физическими свойствами. В настоящее время больше других изучены электрические, магнитные, антикоррозионные, механические свойства, и в этом параграфе будет дана краткая характеристика этих свойств.  [c.287]

Наиболее текстурно чувствительными являются механические свойства, прежде всего упругие постоянные, а также магнитные  [c.291]

К этой группе материалов относятся низкоуглеродистая электротехническая сталь, применяемая для изготовления реле, сердечников и полюсов электромагнитов, низколегированные кремнистые (1—2%) горячекатаные стали для изготовления корпусов динамомашин и генераторов, высоколегированные кремнистые (4—5%) горячекатаные стали для изготовления гидрогенераторов и машин переменного тока повышенной частоты и среднелегированные (2,5—3,5 Si) холоднокатаные текстурованные стали (трансформаторная сталь) для изготовления Турбо- и гидрогенераторов, а также крупных электродвигателей постоянного тока. Эти материалы сочетают высокие магнитные свойства, хорошую технологичность, хорошие или удовлетворительные механические свойства и сравнительно низкую стоимость.  [c.131]


Отпуск при 600° С сплава комол позволяет использовать постоянный магнит из этого сплава в условиях несколько повышенных температур, при этом структурных превращений в сплаве не происходит, в то время как в кобальтовой стали, закаленной на мартенсит, даже при незначительном нагреве (до 50° С) резко ухудшаются магнитные свойства. Введение в сплав комол до 6% Мп улучшает механические свойства без снижения магнитных характеристик.  [c.220]

В зависимости от условий эксплуатации конструкционные порошковые материалы (КПМ) подразделяют на две группы материалы, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы материалы со специальными свойствами — износостойкие, инструментальные, жаропрочные, жаростойкие, коррозионностойкие, для атомной энергетики, с особыми физическими свойствами (магнитными, электро- и теплофизическими и др.), тяжелые сплавы, материалы для узлов трения — антифрикционные и фрикционные и др. Физико-механические свойства КПМ при прочих равных условиях определяются плотностью (или пористостью) изделий, а также условиями их получения. По степени нагруженности порошковые детали подразделяют на четыре группы (табл. 7.1).  [c.174]

Алюминий повышает механические свойства латуней и улучшает коррозионную стойкость их в отношении общей коррозии. Железо задерживает рекристаллизацию латуней и измельчает зерно. Однако при содержании железа более 0,03% латуни обнаруживают магнитные свойства. Особенно благоприятное действие железо оказывает на латуни в сочетании с марганцем, никелем и алюминием.  [c.175]

Известно, что ориентированное расположение блоков или зерен существенно повышает механические свойства, если тип текстуры согласуется с видом напряженного состояния [137, 138]. Зависимость свойств (прежде всего сопротивления деформированию и разрушению) от направленности элементов структуры можно использовать для получения дополнительного эффекта упрочнения. В частности, при ТМО направленность элементов структуры в упрочняемом металле можно получить наложением магнитного поля при аустенитно-мартенситном превращении магнитное поле ориентирует выделяющуюся или образующуюся вновь фазу и дает направленный ход процессу превращения у а. Полезное изменение механических свойств при этом возникает в результате  [c.87]

Контроль структуры и механических свойств изделий осуществляют путем установления корреляционных связей между контролируемым параметром (температурой закалки и отпуска, твердостью и т. д.) и какой-либо магнитной характеристикой (или несколькими). Успешно контролируется состояние поверхностных слоев (качество поверхностной закалки, азотирования и т. д.), а также наличие а-фазы.  [c.6]

Задача о корреляции магнитных и механических свойств сталей тесно  [c.69]

Приборы контроля механических свойств по остаточной индукции и магнитной проницаемости. Короткие детали с большим коэффициентом размагничивания имеют петлю гистерезиса (в координатах индукция — напряженность внешнего магнитного поля), сильно наклоненную к оси напряженности поля. При этом участок петли во втором квадранте плоскости (—Н, -]-В) становится прямолинейным (рис. 38).  [c.74]

Изменение свойств материала Изменение структуры материала, механических свойств (пластичность), химического состава, магнитных свойств, газопроницаемости, загрязнение жидкостей (смазки, топлива)  [c.81]

В книге излагаются основы физики явлений, происходящих в диэлектрических, полупроводниковых и магнитных материалах. Приводится классификация материалов н описываются их электрические, физико-химические и механические свойства. Рассматривается технология производства электротехнических материалов. В седьмое издание включены сведения о новых материалах сверхпроводниках, полупроводниках и активных диэлектриках, расширены сведения о качестве материалов.  [c.2]

Для понимания электрических, магнитных и механических свойств материалов и других их особенностей необходимо исследовать структуру и химический состав материалов.  [c.5]


Медь широко используют для изучения механизма влияния излучения, но как технический материал она имеет ограниченное применение в реакторах. Изучение влияния радиации на медь основано на экспериментальном определении изменений механических свойств, внутреннего трения, электросопротивления и магнитных свойств.  [c.266]

В книге приведены общие соотношения для расчета гармонических составляющих э.д.с. накладного датчика в зависимости от коэрцитивной силы, остаточной и максимальной индукции ферромагнитных материалов при одновременном воздействии Переменных и постоянных полей. Даны рекомендации по выбору оптимальных значений намагничивающих полей и конструктивных элементов датчиков. Рассмотрены основные типы феррозондов с поперечным и продольным возбуждением. На основании общих соотношений теории дислокаций описаны процессы упрочнения, ползучести, изменения магнитных и механических свойств металлов при деформации и усталости нагружения. Даны рекомендации по применению методов и приборов по контролю качества термообработки и упругих напряжений, однородности структуры.  [c.2]

Ркс. 3. Изменение магнитных, механических свойств и показаний коэрцити-метра в зависимости от температуры отпуска (а) зависимость коэрцитивной силы от механических свойств (б) для стали 12Х1МФ / — плавки 1, 2, 3 2 — плавка 4 (нормализация от 950—980 °С, выдержка 30 мин) 3 — плавки 1, 2, 3 (нормализация от 950 °С, выдержка 3 мин) выдержка при  [c.108]

Из изложенного следует, что лишь сплавы Э. З и Э4 являются феррит-ными. Магнитные характеристики у них получаются выше, но они более хрупки. Сплавы группы ЭЗ и Э4 называются трансформаторным железом, а Э1 и Э2 — динамной сталью. В соответствии с этим трансформаторное железо (основное применение — сердечники трансформаторов), обладающее более высокими магнитными свойствами, имеет более ннзкие механические свойства, чем динамная сталь (главное применение — детали динамомашин).  [c.548]

Деформирование жидкого кристалла приводит, вообще говоря, к его дижлектрической поляризации и соответственно к возникновению электрического поля (см. VIII, 17) этот эффект обычно слаб, и мы не будем рассматривать его влияние на механические свойства среды. Мы не будем также рассматривать влияние, которое оказывает на свойства жидких кристаллов внешнее магнитное поле ввиду анизотропии магнитной (фактически диамагнитной) восприимчивости нематика магнитное поле оказывает на него ориентирующее действие.  [c.191]

Механические свойства твердого тела отражают его реакцию на воздействие некоторых внешних факторов. В простейшем случае такими внешними факторами являются механические воздействия сжатие, растяжение, изгиб, удар, кручение. Кроме механиче-v KHx существуют тепловые, магнитные, электрические и другие воздействия.  [c.114]

Далее мы перейдем к рассмотрению термодинамики фазового перехода, которое позволяет установить связь мен<ду тепловыми и механическими свойствами обеих фаз, с одной стороны, и кривой зависимости магнитного ] ритического поля от температуры — с другой. Это обсуждение будет сопровождаться ссылками на экспериментальные результаты, которые нодтвер- ,1лдают теорию.  [c.631]

Листовая низкоуглероднстая электротехническая сталь ГОСТ 3836—47 поставляется в виде листа толщиной 0,5— 8 мм или в виде сортового проката и маркируется в зависимости от коэрцитивной силы стали в отожженном состоянии (табл. 10). Кроме свойств, лимитируемых стандартом, качество электротехнической стали оценивается по ее склонности к магнитному старению . Этот термин требует некоторого пояснения. Условное по существу разделение старения мягкой стали на магнитное старение (повышение и механическое старение (изменение механических свойств) имеет определенный смысл вследствие характерных особенностей магнитного старения.  [c.134]

В книге освещены вопросы физики диэлектриков, физико-механических свойств диэлектриков и их поведение в эксплуатации. Рассмотрены газообразные и жидкие диэлектрики, твердые электроизоляционные материалы проводниковые, полупроводникоаь(е и /магнитные материалы.  [c.2]

Так как металлокерамические магниты содержат поры, то их магнитные свойства уступают литым материалам. Как правило, пористость (3—5 %) уменьшает остаточную индукцию и магнитную энергию IFniax (на 10—20 %) и практически не влияет на коэрцитивную силу Яд. Механические свойства их выше, чем литых магнитов. Металлопластические магниты изготовлять проще, чем металлокерамические, но свойства их хуже. Металлопластические магниты получают из порошка сплавов ЮНД или ЮНДК, смешанного с порошком диэлектрика (например, фенолоформальдегид-ной смолой). Процесс изготовления магнитов подобен процессу прессования пластмасс и заключается в прессовании под давлением 500 МПа, нагреве заготовок до 120—180 °С для полимеризации диэлектрика.  [c.108]

Механические свойства металлопластических магнитов лучше, чем у литых, но магнитные свойства хуже, так как они содержат до 30 % по объему пеферромагнитного связующего диэлектрического материала В, меньше на 35—50 %, — на 40—60 %.  [c.108]

Опробование термо-механико-магнитной обработки на промышленных сталях 40Х1НВА и 37ХНЗА подтвердило возможность повышения механических свойств при закалке образцов в магнитном поле [96].  [c.88]

По способу получения первичной информации различают следующие методы магнитного вида контроля магнитопорошковый (МП), магнитографический (МГ), феррозондовый (ФЗ) эффекта Холла (ЭХ), индукционный (И), пондеромоторный (ПМ), магниторезисторный (МР). С их помощью можно осуществить контроль сплошности (методами дефектоскопии) (МП, МГ, ФЗ, ЭХ, И) размеров (ФЗ, ЭХ, И, ПМ) структуры и механических свойств (ФЗ, ЭХ, И).  [c.6]


Магнитные ленты [22] применяют в магнитографической дефектоскопии. Двухслойные ленты состоят из немагнитной основы (ацетилцеллюлозы, поливинилхлорида, лавсана) и магнитно-активного слоя — порошков окиси железа, взвешенного в лаке, обеспечивающего хорошую адгезию с основой. Для изготовления рабочего слоя используют гамма-окислы железа (у-РсгОз), железокобальтовый феррит (СоРегОз), двуокись хрома (СгОа). В однослойных лентах магнитный порошок вводится непосредственно в основу (резина, полиамидные смолы). Однослойные ленты получили меньшее распространение из-за невысоких механических свойств.  [c.14]

Приборы для контроля физико-механических свойств материала деталей, действие которых основано на измерении магнитной проницаемости, пока не нашли широкого применения в промышленности, хотя в ряде случаев они более удобны, чем коэрцити-метры, проще в автоматизации и иногда дают более четкие корреляционные зависимости между магнитными и другими физическими характеристиками, В измерительной технике применяют два основных способа измерения магнитной проницаемости логометрический и индукционный. Первый из них основан на принципе действия логометров, измеряющих отношение значений двух параметров, например индукции и напряженности намагничивающего поля. В данном случае необходимо, чтобы ток в одной обмотке логометра был пропорционален индукции, во второй — напряженности намагничивающего поля. Ло-гометр включается по схеме вольтметра-амперметра и, если необходимо, через усилители мощности.  [c.75]

Металлические и неметаллические материалы для звукозаписи. Для записи и воспроизведения звука используют магнитотвердые стали и сплавь , позволяющие изготовлять из них ленту или проволоку, биметаллические ленты из основы с нанесенным па нее сплавом-звуконосителем (если последти не обладает такими механическими свойствами, при которых нз него можно изготовить ленту или проволоку), а также пластмассовые и целлюлозные ленты с нанесенными на их поверхность порошкообразными ферритами железа или кобальта или введенньп.. и в их объем в качестве магнитного наполнителя.  [c.297]

В Отечественную войну на Челябинском тракторном заводе М. Н. Михеевым и другими был организован контроль этим методом твердости гусеничных траков. Позднее центром работ в области коэрцитиметрии стал возглавляемый М. Н. Михеевым Институт физики металлов АН СССР в Свердловске. Здесь опубликовано большое количество работ в области магнитных измерений и изучения магнитных и механических свойств сталей (Л. 48, 50].  [c.103]


Смотреть страницы где упоминается термин Магнитные Механические свойства : [c.22]    [c.135]    [c.7]    [c.86]    [c.220]    [c.238]    [c.304]    [c.107]    [c.88]    [c.89]    [c.18]    [c.69]    [c.69]    [c.70]    [c.350]    [c.289]    [c.6]   
Чугун, сталь и твердые сплавы (1959) -- [ c.95 , c.98 , c.99 ]



ПОИСК



347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические поставляемого полуфабриката 348 Магнитные свойства 347 — Марки

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические свойства 347 — Цены

37, 65 — Вязкость ударная 38 Диаграммы структурные 37, 39 Коррозионная стойкость 38, 39 Магнитные свойства 36, 40 — Механические свойства

Анизотропия магнитных свойств механическая

Контроль механических свойств по остаточной индукции и магнитной проницаемости — Технические характеристики 76Типы приборов

Отжиг отливок из высокопрочного чугуна магнитные свойства 5 — 668 Влияние на механические свойства

Стали для измерительных инструментов магнитные и механические свойств

Стали магнитно-мягкие, кривая физические и механические свойства

Сталь и сплавы устойчивые электротехническая магнитные, физические и механические свойства

Чувильдеев В.Н., Качемцев А.Н., Киселев В.К Исследование корреляции магнитных и физико-механических свойств трубных сталей



© 2025 Mash-xxl.info Реклама на сайте