Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бура — Свойства

Поскольку рассматриваемая зола (а также зола березовского и лейпцигского бурых углей) не содержит таких соединений, коррозионная активность которых со временем изменяется, то первоначальная стадия коррозии определена процессами, в течение которых на поверхности металла образуется оксидный слой со стабильными диффузионными свойствами. На этой стадии происходит монотонное изменение показателя степени окисления от единицы до значения, соответствующего коррозии на основной стадии при неизменяющемся кинетическом коэффициенте А. Следовательно, основной задачей исследования кинетики коррозии в первоначальной стадии является установление темпа изменения показателя степени окисления стали во времени.  [c.162]


Это приводит к разрушению окисных пленок, обусловливающих пассивное состояние. В практике отмечены случаи, когда после бури под действием солей изоляторы теряют свои свойства и становятся проводниками тока при наличии небольшого количества воды.  [c.10]

Особо тяжелый бетон. Объемный вес более 2600 кг м . Для его изготовления используют плотные тяжелые заполнители барит, тяжелые железные руды, лимонит, чугунную дробь, магнетит и др. Основное назначение — создание биологической защиты источников радиоактивного излучения. Для улучшения защитных свойств тяжелых бетонов в их состав вводят добавки борную кислоту, буру, соли лития.  [c.518]

С целью увеличения флюсующих свойств в состав этих солей добавляют 4—5% буры.  [c.282]

Больцмана постоянная 153 Бринеля микроскопы 252 Бурые угли — см. Угли бурые Бутадиен — Тепловые свойства 34  [c.534]

В зависимости от технологических свойств бурые, каменные угли и антрациты можно объединить в технологические марки, группы и подгруппы.  [c.10]

Прежде чем применить рециркуляцию газов для регулирования вторичного перегрева на блочных установках электростанций СССР, была проведена проверка такой системы на промышленном котле средней мощности без промежуточного пароперегревателя. Представлялось важным выяснить влияние рециркуляции газов на полноту сгорания топлива, проверить расчетные данные по влиянию рециркуляции газов на тепловые характеристики котла, т. е. эффективность этой системы, определить ее динамические свойства, выявить эксплуатационные особенности системы рециркуляции газов и т. п. Такая работа была выполнена на котле типа ПК-Ир паропро-изводительностью 230 т/ч, давлением пара 100 ат и температурой 510° С, сжигающем челябинский бурый уголь (рис. 5-2).  [c.135]

В шлаке, удаляемом из топки, всегда имеются несгоревшие частицы топлива. Содержание горючих в шлаке зависит от вида и сорта топлива, количества и свойств золы в топливе и от конструкции топки. Наибольшей потерей со шлаками характеризуются топки с ручными колосниковыми решетками для каменных и бурых углей. Для таких топок тепловая потеря в результате частичного удаления топлива со шлаками составляет от 1,5 до 7%, достигая больших значений для весьма зольных топлив. Для механических и ручных топок величина рассматриваемой потери зависит от теплового напряжения зеркала горения, возрастая с его увеличением.  [c.37]


Обработка показала, что при одинаковых или близких по упругим свойствам пылевидных материалах (например, челябинский и башкирский бурые угли), т. е. при фч/фк 1(1ет, все экспериментальные точки (в диапазоне изменения 1>к=0,1 — 1,35 м йУо=3,5—15 м/с и 6= 72  [c.72]

Температура подогрева воздуха определяется конкретными условиями работы топочной камеры и главным об-)азом свойствами топлива и конструкцией топочной камеры. Например, при слоевом сжигании каменных углей температура воздуха поддерживается 200° С при пылевидном ч жигании твердых топлив — 300—400° С и выше. Слоевое сжигание торфа или бурых углей высокой влажности производят при подогреве воздуха до температуры 250° С и выше. Экономически целесообразно использовать подогретый воздух также при сжигании газообразного и жидкого топлив. Низкий уровень температуры подогрева воздуха при слоевом сжигании твердых топлив определяется условиями работы металла колосниковой решетки.  [c.7]

Бурый уголь. В СССР бурые угли имеют большое распространение, но силовая газификация их освоена только для лучших сортов. Препятствием к широкому использованию бурых углей для силовой газификации является низкая их транспортабельность, повышенная зольность (20—28%) и влажность (до 60%), а также свойство образовывать мелочь при попадании в зоны высоких температур. Кроме того, газификация бурых углей сопровождается обильным выделением смол (8—14% от веса топлива).  [c.424]

Система железо — кислород. Железо может проявлять в своих соединениях степень окисления от -(-6 до +2. Оксид РеОз, образованный ковалентными полярными связями, обладает кислотными свойствами, неустойчив и при сварке образоваться не может. Оксид Ге Оз — соединение со смешанными связями, ам-фотерное — образует соли (ферриты). В природе РегОз встречается в виде железной руды — гематита, или если он гидратирован, то в виде (РезОз-НгО), бурого железняка или гетита.  [c.320]

Буроугольный аоск - продукт переработки бурого угля, смесь воска, смолы и асфальтоподобных веществ. Это однородный материал темно-бурого цвета. Температура плавления 90°С. Он обладает высокой прочностью и твердостью, но хрупкий, высоковязкий в жидком состоянии, в зависимости от применяемого растворителя, а также особенностей процесса экстракции и дальнейшей обработки воска свойства его могут изменяться в значительных пределах.  [c.175]

Наиболее изнашиваемой деталью молотковых мельииц являются била, длительность работы которых от 200 до 1000 ч зависит от свойств топлива и материала, из которого оии изготовлены. Молотковые мельницы применяют для размола каменных углей и продуктов их обогащения при большом выходе летучих, бурых углей, сланцев и фрезерного торфа их производительность принято определять по бурому углю в иределах от 0,35 до 27,8 1,кг/с (от 2,7 примерно до 100 т/ч). Удельный расход электроэнергии на размол и подачу пыли в топочную камеру зависит от вида топлива и составляет от 4 до 16 кВт-ч/т топл пна.  [c.320]

Близко к этому виду коррозии растрескивание в бурой дымящейся азотной кислоте, содержащей > 2 % N02- И в этом случае основной фактор разрушения — нарушение защитной оксидной пленки. При реакции активной поверхности со средами, обладающими сильными окислительными свойствами, вследствие большого экзотермического эффекта реакции окисления не ограничивается поверхностью, а распространяется на более глубокие слои. Интенсивность реакции и соответственно величина теплового эффекта настолько велики, что приводят не только к образоЕ нию хрупких оксиднЪ>х слоев, содержащих большое количество трещин и не способных затормозить дальнейшее окисление, но и вызывают воспламенение металла (пирофорная реакция). В начальной стадии на поверхности металла возникает осадок тонкодисперсного титана, в результате чего даже при небольших ударах или при трении может произойти взрыв.  [c.85]

Анодная и катодная реакции коррозионного процесса являются первичными процессами электрохимической коррозии. При коррозии возмояшы и вторичные процессы, связанные с образованием вторичных, зачастую труднорастворимых продуктов коррозии, существенно снижающие скорость коррозионного разрушения металлов. Так, железо и стали, растворяясь в крепкой (70 % и выше) серной кислоте, образуют нерастворимый в ней сульфат, защищаюнщй поверхность от воздействия среды. При коррозии сталей в средах с pH > 5,5 на поверхности образуется труднорастворимый-вторичный продукт — гидроксид железа (II), который в результате взаимодействия с растворенным в среде кислородом образует еще более труднорастворимый продукт — бурый гидроксид железа (III), обладающий хорошими защитными свойствами [42].  [c.24]


Грибковые повреждения весьма разнообразны и всегда вызывают изменения окраски древесины (она темнеет или светлеет). Грибковое повреждение может вызвать или только изменение окраски (синева), или же ведет, помимо этого, к постепенному раз-рущению древесины (белые, бурые и смешанные окраски), вызывая гниль. Влияние синевы на механические свойства при действии статических нагрузок незначительно (2—3%).  [c.333]

Флюсы — материалы нреимущественно минерального происхождения, оптимизирующие металлургические процессы нри выплавке и переплавке металлов, их сварке, пайке, термической и других видах обработки. В качестве флюсов применяют мел, доломит, мрамор, флюорит, жидкое стекло, буру, двуокись титана и др., описание которых приведено вслед за оппсанием основного материала или под своим названием. В связи с тем, что указанные материалы не обладают полным спектром свойств, необходимых для выполнешш своих технологических функций, синтезируются искусственные флюсы описание главнейших из них приведено ниже. В ГОСТ 21639.0—76н-ГОСТ 21639.11—76 приведены критерии оценок и соответствующие методы испытания флюсов для электрошлакового переплава.  [c.415]

Бор В (Borum). Порядковый номер 5, атомный вес 10,82. Элементарный бор получен в виде бурого порошка с плотностью 2,3 кап = 2550°, яа 2300°. По химическим свойствам бор металлоид при нагревании на воздухе образует окись бора В2О3  [c.348]

В табл. 1 твердые топлива представлены антрацитом, различными марками каменных и бурых углей, а также торфом и лигнптами. В зависимости от свойств твердого топлива, схем пылеприготовления и способов сушки топлива применялись вихревые, прямоточные пылеугольные горелки или открытые амбразуры шахтно-мельничных топок.  [c.4]

Химические свойства золы должны быть хорошо известны, оообенно ib случае контакта топлива с материалом и при выборе футеровки печей, так как зола может разрушать кладку и входить в реакцию с обрабатываемым материалам. Легкоплавкая зола (4 менее 1 200° С) заливает колосниковые решетки топок и газогенераторов, затрудняя равномерный проход воздуха через слой топлива (или обрабатываемый материал). Откладывающаяся в дымоходах зола нарушает аэродинамический режим и снижает производительность установок. Уносимая газами зола изнашивает металлические поверхности, эродируя и корродируя их. Особенно это относится к рекуператорам и дымососным установ кам лоэто му перед ними следует устанавливать золоуловители, типы которых определяются местными условиями. Наибольшую зольность Л" имеют сланец и бурый уголь. Наиболее эффективные топлива (мазут и газ) свободны от этого недостатка, что значительно упрощает эксплуатацию.  [c.31]

По своим свойствам золовые отложерш подразделяются на связанные и сыпучие. К первым относится эрла бурых и ряда каменных углей, а также сланцев, фрезерного торфа и мазута. Сыпучие отложения образуются при сжигании низкореакционных топлив (углей марки АШ и тощих углей), а также некоторых каменных углей (например, экибастузских).  [c.50]

Т ермин гуминовые вещества (иногда их называют гумусовыми веществами) приходится рассматривать как собирательное понятие, и отдельные относящиеся к этому классу продукты нельзя отождествлять по их свойствам. Общими для всех гуминовых веществ являются 1) общность генезиса их в природных условиях в результате разложения органических веществ в отсутствие доступа воздуха 2) малая растворимость в воде (в которой они находятся большей частью в коллоиднорастворенном состоянии) 3) характерная бурая окраска. Процесс, приводящий к образованию гуминовых веществ в природных условиях, получил название гумификации он является одной из стадий образования торфа.  [c.31]

Законом о пятилетием плане щредписано (для 1950 г.) обогащение is ex коксующихся углей с зольностью свыше 7%, энергетических каменных углей с зольностью более 10%, а также развитие обогащения бурых углей. Для нормальной работы транспорта желательно снабжение его сортированным топливом с большей теплотворной способностью и изеест-ными свойствами спекаемости. Специфические требования предъявляет к качеству топлива и промышленность химической переработки топлива. Наконец, нефть потребляется двигателями внутреннего сг0 рания и идет на глубокую переработку для получения автотранспортных и авиационных топлив и- т. д.  [c.24]

Шлакование топок является распространенным видом неполадок, часто создающим весьма значительные затруднения в эксплуатации котельных установок. При высокой температуре в топке, достигающей в ядре пылеугольного факела более 1400°С, содержащаяся в топливе зола плавится, образуя щлак, и уносится в газоходы котла или осаждается и налипает на стены топки и трубы поверхностей нагрева, загрязняя и зашлаковывая их. Интенсивность шлакования зависит от зольности топлива и свойств шлака. Последние же зависятот свойств золы топлива и особенностей процесса его горения, в частности от избытка воздуха и хара1ктера газовой среды в разных частях топки. Шлакование топок меньше при тугоплавкой золе с температурой жидкоплавкого состояния выше 1425°С (карагандинский каменный уголь марок ПЖ, ПС, подмосковный бурый рядовой уголь и др.) и значительно увеличивается при легкоплавкой золе с температурой жидкоплавкого состояния меньше 1200°С (некоторые угли шахт Донецкого бассейна, некоторые среднеазиатские бурые угли, фрезерный торф и др.).  [c.36]

К топливам, при сжигании которых нашли применение схемы с пылеконцентраторами, можно отнести широкий класс бурых углей от сравнительно высококалорийных QPh=25 400—32 000 кДж/кг (3100 — 3900 ккал/кг), W p=1,94—2,98(%-кг/МДж) (8,2— 12,5%-кг/Мкал) до чрезвычайно низкосортных греческих месторождений QPh = 2940 — 3780 кДж/кг(700 — 950 ккал/кг), й7пр=16 — 20,5%-кг/МДж (67 — 86% X Xкг/Мкал), а также лигнитов и торфов. Несмотря на резкое различие QPh, влажности и зольности, все упомянутые топлива имеют одно общее свойство — высокий выход летучих У =48—65%.  [c.112]

При работе с топливами, имеющими переменные качества рабочих характеристик и плавкостных свойств золы, желательно предусматривать возможность регулирования температуры в ядре факела Оф, например, путем увеличения I при возрастании QPh и уменьшении При сжигании топлив с пониженной реакционной способностью и тугоплавкой золой, например бикинского бурого угля с 3 1773 К (1500°С) [Л. 108], необходимо стремиться по возможности к более высокой величине Оф, так как даже при одинаковых начальныу 116  [c.116]


Влажность топлива при небольшой зольности не лимитирует топочный процесс, если только топливо не теряет свойство сыпучести и свободно проходит через питатели забрасывателей. Есть, например, сведения об успешной работе топки с цепной решеткой обратного хода на буром угле с характеристиками 1Ер = 50- 55%, Л<== 15- 20% и QK= 1700- -1850 ккал1кг, причем несмотря на холодное дутье, теплоиапряжения зеркала горения составляли до 1100 тыс. ккал1 мР-ч) [Л. 77]. По-види-мому, возможно сжигать и более влажное топливо — до Wp = = 60%, на что указывает опыт Австралии, где в таких топках используются угли с влажностью Ц7р = 48 -59% и зольностью А<= = 4 0% [Л. 74].  [c.208]

Пыль в смеси с воздухом (аэропыль) образует эмульсию, которая, подобно жидкости, легко транспортируется по трубопроводам. Это положительное свойство широко используется при пневмотранспорте в сушильно-мельничных системах. Однако топливная пыль вместе с воздухом в определенных условиях может образовать взрывоопасную смесь. Процентное содержание кислорода в газовоздушной смеси имеет при этом решающее значение. При недостатке кислорода возникновение взрыва невозможно. Предельное содержание О2 в сушильном агенте, ниже которого топливная пыль не взрывается, равно для торфяной и сланцевой пыли 16%, пыли бурых углей 18%, пыли каменных углей 19%. Присутствие в сушильном агенте инертных продуктов сгорания, а также водяных паров, снижает взрывоопасность аэропыли вследствие снижения доли кислорода. Факторы, влияющие на образование взрывоопасной смеси пыли с воздухом выход летучих, температура смеси за мельницей, влажность и зольность топлива, тонкость размола, концентрация топлива в пылевоздушной смеси. В целях взрывобезо-пасности на элементах пылеприготовительной установки устанавливают взрывные клапаны, ог заничивающие давление при взрыве.  [c.49]

К кусковатым бурым углям относятся ли-гнитистые бурые угли Закарпатской области и близкие к ним по ряду свойств угли Львовской и Тернопольской областей к этой группе можно отнести также уголь Болградского месторождения, Измаильской области.  [c.78]


Смотреть страницы где упоминается термин Бура — Свойства : [c.776]    [c.786]    [c.813]    [c.433]    [c.74]    [c.505]    [c.479]    [c.348]    [c.356]    [c.366]    [c.163]    [c.23]    [c.99]    [c.473]    [c.473]    [c.419]    [c.95]    [c.123]    [c.116]    [c.592]    [c.234]   
Чугун, сталь и твердые сплавы (1959) -- [ c.2 ]



ПОИСК



Бура

Бурав

Буров

Вопросы получения и очистки металлов Спеддинг, Даан, Уэйкфилд, Деннисон. Получение и свойства металлического скандия высокой чистоты Перевод инж. И. В. Бурова



© 2025 Mash-xxl.info Реклама на сайте