Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

V газоразрядная —

Более целесообразным в промышленности считается использование не солнечной энергии, а специальных высокоинтенсивных источников полихроматического света типа ламп накаливания или дуговых (газоразрядных) ламп. Эти лампы создаются  [c.116]

I, изготовленный из рабочего вещества, помещается между двумя зеркалами. Зеркало 2 полностью отражает все падающие на него лучи, а зеркало 3 полупрозрачно. Для накачки энергии используется газоразрядная лампа 4, которая для большей эффективности облучения кристалла помещается вместе с ним внутрь отражающего кожуха 5, выполненного в виде эллиптического цилиндра. При размещении лампы и кристалла в фокусах эллипса создаются наилучшие условия равномерного освещения  [c.121]


К первой группе относится гелий-неоновый лазер, схема которого приведена на рис. 3.6. Генерация когерентного излучения может проходить в видимой (Xj = 0,633 мкм) и в инфракрасной области (Я.2= 1,15 мкм, = 3,39 мкм). Газоразрядная трубка 1 этого лазера заполняется гелием и неоном при парциальных давлениях соответственно 133 и 13 Па. В трубке от высоковольтного источника питания 2 создается электрический разряд 3, который возбуждает атомы гелия и неона в результате электронных ударов. Излучение выходит из полупрозрачного зеркала 4. Гелий-неоновый лазер имеет сравнительно небольшую мощность, но из-за простоты устройства, надежности и стабильности излучения он получил широкое распространение.  [c.122]

В ионных газовых лазерах используются переходы между энергетическими уровнями ионов благородных газов (ксенон, аргон, неон, криптон), а также фосфора, серы и хрома. Типичный представитель этой группы — аргоновый лазер, который по конструкции похож на гелий-неоновый лазер. Газоразрядная трубка наполнена аргоном при давлении порядка десятков паскалей. Мощность лазеров этой группы выше, чем лазеров на атомных переходах.  [c.122]

Катодолюминесценция — свечение, вызываемое действием катодных лучей — быстродвижущимися под действием электрического поля электронами. Этот вид возбуждения широко применяется в газоразрядных трубах, где ускоренный электрическим полем электрон на своем пути может ионизовать сотни и тысячи атомов газа, вызывая тем самым их свечение. Катодолюминесценция успешно применяется также для возбуждения порошков, тонких пленок и поверхностных слоев монокристаллов.  [c.360]

Источник накачки представляет собой импульсную газоразрядную лампу, питающуюся от источника высокого постоянного напряжения через конденсатор постоянной емкости.  [c.384]

Диод газоразрядный — см. вентиль.  [c.142]

Лампа газоразрядная — см. прибор ионный.  [c.146]

Прибор газоразрядный — см. прибор ионный электровакуумный.  [c.151]

Счетчик газоразрядный — см. счетчик ионный.  [c.154]

По принципу генерирования колебаний генераторы подразделяют на генераторы с обратной связью и генераторы параметрические (релаксационные). Простейшим релаксационным генератором является генератор пилообразного напряжения на газоразрядной лампе (рис. 3, а). Конденсатор заряжается до напряжения зажигания лампы, после этого он быстро разряжается через лампу, лампа тухнет, и конденсатор начинает снова заряжаться.  [c.169]

Счетчик газоразрядный — см. Счетчик ионный --ионный пропорциональный 154  [c.764]

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей поэтому эти лампы называют кварцевыми лампами.  [c.279]

В случае свечения газоразрядной плазмы низкого давления проявляется хаотическое тепловое движение атомов. Из-за эффекта Доплера (см. 7.3) излучение каждого из них следует характеризовать своей частотой.  [c.188]

Очевидно, что чем длиннее цуг, испускаемый атомом, т. е. чем монохроматичнее свет, тем при большей разности хода возможна интерференция. В случае газоразрядных источников света в приборе Майкельсона удавалось наблюдать интерференцию при разности хода около полумиллиона длин волн. Опыты этого рода могут служить для характеристики процессов при излучении атома (см. 22). Обратно, располагая источником монохроматических волн, можно осуществить интерференцию при огромной разности хода и таким образом определить длину волны с очень большой точностью. Для некоторых лазерных источников света (гелий-неоновый лазер, например) ширина спектра излучения составляет 10 —10 с , что позволяет наблюдать интерференцию при разности хода в 10 —10 длин волн.  [c.143]


Длина волны этого излучения в вакууме Я,вак = 6057,8021 10" м. Для так называемого стандартного воздуха (давление 760 мм рт.,ст., температура IS" С, содержание Oj 0,03%) длина волны этой линии возд= 6056,12525 10" м. Строго определены условия возбуждения эталонного излучения, при которых должен находиться источник света газоразрядная лампа с горячим катодом, наполненная изотопом криптона Кг (чистотой более 99%) и охлаждаемая до температуры 63 К (тройная точка азота). Оговорены диаметр разрядной трубки, плотность разрядного тока и т. п. Практика показала, что относительная точность воспроизведения эталонной длины волны составляет 1 10" .  [c.144]

Кривая дисперсии и абсорбции, задаваемая в классической теории всей совокупностью свойственных данной группе атомов осцилляторов, в квантовой теории определяется всей совокупностью возможных для данного атома значений энергии Е , Е< ,. .., Ет, , Еп и т. д., которые в силу основного положения теории квантов принимают не любые мыслимые, а лишь определенные дискретные значения. Исходное состояние, в котором находятся атомы (вернее, в котором находится значительное большинство атомов), обычно является состоянием, соответствующим минимальному из возможных значений энергии атома Е- . Если через газ пропускают ток или каким-нибудь другим способом к газу непрерывно подводится энергия, то часть атомов может перейти в более высокие энергетические состояния. Так, например, свечение газоразрядных источников обусловлено атомами, возбужденными в высокие энергетические состояния покидая эти состояния, атомы и испускают свет.  [c.561]

В большинстве опытов, обсуждавшихся выше в связи с экспериментальным обоснованием теории Бора, мы имели дело именно со спонтанным испусканием света. Таково положение и во многих современных источниках — электрических дугах, пламенах, газоразрядных лампах и т. п. ). Направим свет от источника в спектральный аппарат и измерим интенсивность спектральной линии, отвечающей переходу т -> п. Из геометрических условий опыта легко рассчитать ту часть общей мощности которая попадает  [c.733]

Для возбуждения генерации обычно пользуются импульсными газоразрядными лампами, дающими яркую световую вспышку длительностью порядка одной миллисекунды. Для возникновения генерации световая мощность, непосредственно используемая для возбуждения ионов хрома в 1 см рубина, должна составить около 2 кВт. Если лампа обеспечивает такую мощность возбуждения, то рубиновый лазер генерирует световой импульс с длительностью, несколько меньшей длительности свечения лампы. На экране, расположенном параллельно полупрозрачному зеркалу на торце рубинового стержня, можно увидеть ослепительно яркую  [c.787]

Принципиальная схема гелий-неонового лазера изображена на рис. 40.10. Здесь / — газоразрядная стеклянная трубка, диаметром несколько миллиметров и длиной от нескольких десятков сантиметров до 1,5 м и более. Торцы трубки замкнуты плоскопараллельными стеклянными или кварцевыми пластинками, ориентированными под углом Брюстера к оси трубки. Для излучения,  [c.792]

При нагретом катоде трубки и включенном анодном напряжении трубка светится, и в ней отчетливо виден газоразрядный столб розового цвета. По внешнему виду включенная трубка вполне аналогична газоразрядным неоновым рекламным трубкам. Если через спектроскоп наблюдать ненаправленное свечение этой трубки, то отчетливо видна совокупность многих спектральных линий неона, расположенных в различных областях видимого спектра, и желтые линии свечения гелия.  [c.792]

Для генерации и наблюдения инфракрасного излучения того же лазера необходимо иметь прозрачные для него торцовые окна газоразрядной трубки, зеркала резонатора с высокими значениями коэффициента отражения в инфракрасной области спектра и, разумеется, приемник, чувствительный к инфракрасному излучению, например, болометр или фотодиод.  [c.793]

Ед, Е , i, атом неона имеет еще 28 состояний с энергиями, меньшими д, но они для нас несущественны и на рис. 40.11 не указаны. В результате столкновений с электронами газоразрядной плазмы часть атомов возбуждается,  [c.793]

Изложенная схема процессов сильно упрощена, и существует целый ряд факторов, в той или иной мере затрудняющих развитие генерации. 1< числу мешающих факторов относится, например, фотохимическое разложение молекул красителя при высоких значениях освещенности, нагревание раствора, приводящее к безызлучательному затуханию возбужденного электронного состояния, и многие другие. Однако все эти препятствия устраняются специальными методами ), и генерацию удается осуществить с большим числом разных красителей (их насчитывается сейчас около 100) в импульсном и непрерывном режимах, в широкой области спектра (от 350,0 до 1000,0 нм) и с применением в качестве источников возбуждающего излучения ксеноновых газоразрядных ламп и лазеров.  [c.817]

Исследование распределения твердого компонента по высоте и сечению камеры противоточной торможенной газовзвеси проведено с помощью р-просве 1ивания. В качестве источника излучения был применен стандартный бета-излучатель (препарат Sr ° + Y ° с максимальной энергией 2,18 Мэе). Толщина защитного свинцового контейнера 30 мм. Для увеличения чувствительности блока был применен газоразрядный счетчик с боль-96  [c.96]


Низкотемпературная плазма (температура IOOOK) находит применение в газоразрядных источниках спета и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрическую и Б магиитогидродннамических (МГД) генераторах.  [c.290]

Световой луч. В установках для сварки и пайки световым лучом можно использовать такие источники излучения, как солнце, угольная дуга, дуговые газоразрядные лампы и лампы накаливания. Для технологических целей наиболее перспективные и удобные излучатели — дуговые ксеноновые лампы сверхвысокого давления. Дуговая ксеноновая лампа представляет собой шаровой баллон из оптит  [c.17]

Электрический разряд в лазере на СО2 возбуждается в ох-, лаждаемой газоразрядной трубке, выполняемой обычно из стеклянной трубы диаметром до 60 мм. Увеличение диаметра трубы  [c.122]

Индутрон газоразрядный — артатрон, колба которого надета на средний стержень Ш-образного сердечника трансформатора, катод выполнен как короткозамкнутый виток, ток в котором создает магнит-ное поле.  [c.144]

Триатрон — газоразрядный прибор со скрещенными полями, имеющий холодный катод, роль которого выполняет его внешний цилиндр, и отличающийся от неуправляемого аратрона на постоянном магните наличием управляющего электрода — цилиндрической сетки с кольцевой щелью посередине постоянное магнитное поле создается с помощью постоянного магнита кольцевой формы, надеваемого на прибор.  [c.159]

Динод — см. Умножитель фотоэлектронный 142 Диод 142—143 Диод газоразрядный 142 Десектор 144  [c.754]

Индутрон газоразрядный 144 Интеграл Мора 216—217, 226 Интегрирование графическое 22, 28  [c.755]

Понятие 165 Преобразователь изображения электронно-оптический 151 Приборы газонаполненные — Маркировка 139 --газоразрядный см. Прибор ионний электровакуумный --ионный электровакуумный 151  [c.761]

С включенного последовательно со счетчиком резистора па вход регистрирующего устройства поступает импульс напряжения. Принципиальная схема включения газоразрядного счетчика для регистрации ядерных излучений предстаклена на рисунке 314. По показаниям электронного счетного > стройстза определяется число быстрых заряженных частиц, за регистрированных счетчиком.  [c.327]

Следует заметить, что приведенные оценки (сТког = 3+30 см) хорошо согласуются с результатами эксперимента при использовании обычных источников света (например, газоразрядной плазмой низкого давления), но не лазеров. Эффект генерации в лазере связан с выкужденкым излучением, а не со случайными (спонтанными) переходами, которые рассматрипа.т1ись при построении тех или иных статистических схем. Для лазера T or значительно больше, чем для обычных источников света. Это демонстрируется опытом с неон-гелиевым лазером, в котором интерференция наблюдается при разности хода в несколько десятков метров (см. 5.6).  [c.189]

Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]

Мы упоминаем о сферическом интерферометре, так как он послужил прототипом современного резонатора для газового лазера. Вопрос о внедрении радиофизических понятий в оптику представляет несомненный интерес. Л.М. Прохоров, по-видимому. первым указал, что интерферометр Фабри —Перо является евоеобразны.м резонатором высокой добротности для оптического диапазона. Первый газовый лазер, осуществленный и 1961 г. Джаваном и др., представлял газоразрядную трубку с неон-ге-лиевой смесью, помещенную внутрь интерферометра с плоскими зеркалами с очень высоким коэффициенто.м отражения  [c.252]

В эксперименте интерферометр освещался светом неон-гелиевого лазера, излучающего одну частоту. Это позволило удалить подвижное зеркало М2 на несколько метров и продемонстрировать возможность наблюдения интерференции при столь большой разности хода, так как длина когерентности для лазерного излучения значительно больше Lkq,- 3 30 см, характерной для обычных источников света. Но очевидно, что если зеркало М2 будет передвигаться на расстояние, меньшее 1-ког ( о близко к нулю — световые пути внутри интерферометра примерно равны, Д/ изменяется в пределах нескольких сантиметров), то анало гичная интерференционная картина будет наблюдаться при освещении интерферометра светом обычного (нелазерного) источника, например спектральной линией, излучаемой газоразрядной плазмой, с шириной й/.дои В этом убеждают нас, в частности, классические опыты Майкельсона, который измерял видимость V интерференционных колец при постепенном увеличении разности хода, создаваемой перемещением зеркала М2. Но если при остановках зеркала М наблюдалась стационарная интерференционная картина, то при его движении в указанных пределах неизбежно должен возникать плавный переход от одной стационарной картины к другой, т.е. ее изменение во времени, и появится бегущая интерференционная картина.  [c.396]

Раздел технической физики — дозиметрия имеет своим содержанием 1) измерения и расчеты дозы в полях излучения 2) измерения активности радиоактивных препаратов (радиометрия). Дозы ионизирующего излучения измеряются с помощью специальных приборов — дозиметров (рентгенометров). В качестве датчиков служат небольшие ионизационные камеры, газоразрядные, сцинтил-ляционные и полупроводниковые счетчики (см. 6, 7). Отсчет дозы обычно производится по выходному стрелочному прибору.  [c.218]

Наибольшие значения разности хода имеют место при голографировании трехмерных объектов, когда Ь практически совпадает с размерами объекта. Если, следовательно, последние составляют несколько десятков см, то Av не может превышать 0,01 см . Для сравнения укажем, что ширины спектральных линий в газоразрядных источниках света, как правило, находятся в пределах 0,1 — 1 см , и поэтому их применение в голографии предполагает дополнительную монохроматпзацию с помощью спектральных приборов с высокой разрешающей силой типа интерферометра Фабри —Перо (см. 30, 50).  [c.260]

До сих пор мы не обсуждали квантовую интерпретацию закономерностей, касающихся интенсивностей спектральных линий. Совпадение частот некоторых линий испускания и поглощения имеет в квантовой теории простое объяснение — такие линии приписываются переходам между одной и той же парой уровней. Однако вопрос о том, существует ли какая-либо связь между величиной коэффициента поглощения и интенсивностью линии испускания той же частоты, не находил ответа. Опыт показывает, далее, что интенсивности линий в спектре излучения одного и того же атома могут отличаться в десятки и сотни раз, причем в разных источниках по-разному. Например, в спектре свечения натриевой газоразрядной лампы, кроме желтых 1)-линий (X = 589,0 и 589,6 нм), присутствует больщое число других линий, тогда как в пламени газовой горелки возбуждаются почти исключительно Л-линии. И наоборот, существуют такие линии, для которых отнощение их интенсивностей практически одинаково во всех источниках света.  [c.730]


Для освещения рубинового стержня применяются ксеноновые газоразрядные лампы, через которые разряжается батарея высоковольтных конденсаторов. Емкость такой батареи конденсаторов порядка 1000мкФ, и заряжается она до напряжения в 2—3 кВ. На рис. 40.6 показана батарея конденсаторов С, включенная параллельно лампе 2, но блок зарядки конденсаторов и устройство для быстрого их включения параллельно лампе не изображены.  [c.787]

Первые лазерные голограммы были получены с помощью гелий-неонового лазера с длиной волны излучения >,==0,6328 мкм, работающего на нейтральных атомах. Существующие гелий-неоновые лазеры могут генерировать непрерывные колебания также в ближней инфракрасной области спектра на следующих длинах волн 1,15 мкм и 3,36 мкм, имеющие узкие спектральные линии, что позволяет с их помощью получать 1олограммы сцен глубиной в несколько десятков метров. Однако малая мощность излучения таких лазеров (0,1—0,5 мВт) ограничивает возможность их применения, так как в. этом случае для получения голограммы требуется большое время. экспозиции, составляющее десятки минут. При увеличении мощности гелий-неоновых лазеров путем увеличения длины газоразрядной трубки увеличивается и ширина спектральной линии, так что при мощности 100 мВт гелий-неоновый лазер позволяет регистрировать сцены глубиной не более 20 см.  [c.36]


Смотреть страницы где упоминается термин V газоразрядная — : [c.56]    [c.756]    [c.172]    [c.326]    [c.233]    [c.392]    [c.772]    [c.102]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]



ПОИСК



1ентиль магнитоуправляемый газоразрядный

Баллоны 545 - Баллонные вентили 547 - Газоразрядные посты 547 - Редукторы

Вакуумная обработка газоразрядных ксеноновых шаровых ламп

Вакуумная обработка газоразрядных ламп

Вакуумная обработка газоразрядных ламп прожекторных

Вакуумная обработка газоразрядных люминесцентных ламп

ГАЗОРАЗРЯДНЫЕ СПОСОБЫ ВОЗБУЖДЕНИЯ ТЕХНОЛОГИЧЕСКИХ ЛАЗЕРОВ Основные элементарные процессы в газоразрядной плазме

Габаритные чертежи торцовых газоразрядных счетчиV— Основные характеристики фотоумножителей, применяемых в сцинтилляционных счетчиках

Габаритные чертежи цилиндрических газоразрядных счетчиков

Газоразрядные С02-лазеры с конвективным охлаждением рабочей смеси

Газоразрядные спектральные лампы с линейчатым спектром излучения

Газоразрядные трубки

Газоразрядные циркониевые лампы

Диод газоразрядный

Измерение энергии электронов и плотности энергии в газоразрядной лазерной трубке методом СВЧ-возмущений

Измеритель на газоразрядной трубке

Инду трон газоразрядный

Индутрон газоразрядный

Ионные и газоразрядные электронные приборы

Искровые и газоразрядные источники

Источники газоразрядные

Источники шума газоразрядные

Катод газоразрядный сварочной пушки

Катоды газоразрядных ламп

Лампа большой крутизны газоразрядная —

Лампы газоразрядные

Лампы газоразрядные автомобильные

Лампы газоразрядные газосветные

Лампы газоразрядные галогенные

Лампы газоразрядные дуговые ксеноновые

Лампы газоразрядные зеркальные

Лампы газоразрядные кинопроекционные

Лампы газоразрядные криптоновые

Лампы газоразрядные местного освещения

Лампы газоразрядные миниатюрные

Лампы газоразрядные натриевые

Лампы газоразрядные низкого давления

Лампы газоразрядные общего назначения

Лампы газоразрядные паросветные

Лампы газоразрядные прожекторные

Лампы газоразрядные ртутные

Лампы газоразрядные с йодидами металлов

Лампы газоразрядные самолетные

Лампы газоразрядные светоизмерительные

Лампы газоразрядные специального назначения

Лампы газоразрядные фарные

Лампы газоразрядные цветность

Лампы ртутные газоразрядные — Излучательная способность 1 кн. 159—160 Технические характеристики

Основные характеристики торцовых газоразрядных счетчиков

Основные характеристики цилиндрических газоразрядных счетчиков

Плазма газоразрядная

Приборы г- газоразрядный см, Прибор ионный электровакуумный

Приборы газонаполненные Маркировка газоразрядный

Принцип действия газоразрядных С02-лазеров

Принципы построения схем зажигания газоразрядных приборов

Стекла для газоразрядных ламп

Стробоскопический эффект газоразрядных ламп

Схемы включения газоразрядных ламп

Схемы зажигания маломощных газоразрядных приборов

Счетчик газоразрядный

Технические характеристики газоразрядных счетчиков и особенности их применения

Технология формирования лкминофорных покрытий на основе неорганических связующих в производстве газоразрядных источников света

Типы газоразрядных лазеров

Фотокамеры (кроме кинокамер) фотовспышки и лампы-вспышки, кроме газоразрядных

Электрические разряды, применяемые в газоразрядных лазерах

Эмиссионный анализ при возбуждении спектра в газоразрядных источниках



© 2025 Mash-xxl.info Реклама на сайте