Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Червячная Скорость скольжения

Повышенный износ и заедание червячных передач связаны с большими скоростями скольжения и неблагоприятным направлением скольжения относительно линии контакта.  [c.180]

В связи с высокими скоростями скольжения и неблагоприятными условиями смазки материалы червячной пары должны обладать антифрикционными свойствами, износостойкостью и пониженной склонностью к заеданию.  [c.183]


В глобоидном зацеплении линии контакта располагаются почти перпендикулярно к направлению скоростей скольжения (рис. 9.11), что способствует образованию непрерывной масляной пленки на трущихся поверхностях (см. рис. 9.8 и 9.9). Благоприятные условия смазки способствуют устранению заедания и позволяют повысить значение контактных напряжений. Изготовление червячных передач с глобоидным червяком значительно сложнее, чем с цилиндрическим. При сборке необходимо обеспечить точное осевое положение не только колеса, но и червяка. Передачи очень чувствительны к износу подшипников и деформациям. Эти недостатки ограничивают применение глобоидных передач.  [c.186]

Угол р=1°, выбирается по табл. 10.4 в зависимости от материалов и термообработки элементов червячной пары и скорости скольжения из формулы (10.20)  [c.243]

Для чугунных червячных колес, работающих в паре с чугунным червяком при = 0.25 -ь 2 м/с, допускаемые контактные напряжения [о,] = 1950 -ь 1420 даН/см , а со стальным червяком — [о,] = 1570 -н 880 даН/см большие значения допускаемых напряжений выбирают при меньшей скорости скольжения.  [c.319]

Характерными особенностями работы червячных передач по сравнению с зубчатыми являются большие скорости скольжения и неблагоприятное направление скольжения относительно линии контакта.  [c.233]

В зубчатых передачах скорости скольжения перпендикулярны контактным линиям (прямозубые передачи) или близки к перпендикулярам (косозубые передачи). Между тем в червячных передачах в средней части зуба червячного колеса имеется зона, в которой скольжение происходит вдоль контактных линий (рис. 11.6). На рис. ] .6 цифрами J, 2, 3 отмечены контактные линии в их последовательном положении в процессе зацепления и скорости скольжения иск в некоторых точках (направление U K близко к направлению окружной скорости червяка У ). Зона, в которой направление U k почти совпадает с  [c.233]

Неблагоприятное направление скорости скольжения служит причиной пониженного КПД червячной передачи, повышенного износа и склонности к заеданию (см. 11.5).  [c.234]

Важность расположения контактных линий перпендикулярно направлению скорости скольжения иллюстрируется следующим опытом ЦНИИТМАШ несущая способность червячной передачи была существенно повышена в результате того, что была вырезана зона, в которой скольжение происходит вдоль контактных линий.  [c.234]


Точность изготовления червячных передач регламентирована СТ СЭВ 311—76, который устанавливает 12 степеней точности. Выбор степени точности производится в зависимости от скорости скольжения (см. 3.48). Для силовых передач наибольшее применение находят 7-я (при м/с) и 8-я (при м/с) степени  [c.380]

К. п. д. Для червячных передач к. п. д. П= Пп Пр Пз- где т п, Лр и -рз — коэффициенты, учитывающие соответственно потери в подшипниках, на разбрызгивание, размешивание масла и в зацеплении. Потери в зацеплении Цз — составляют главную часть потерь в передаче. Значение Цз определяют по формуле (3.24) для винтовой пары ii3=tg y/tg(y+(p ), где у — делительный угол подъема линии витка — определяют по формуле (3.175) ф — приведенный угол трения, зависящий от скорости скольжения щ, материала червячной пары, качества смазки, твердости и шероховатости рабочих поверхностей червяка (табл. 3.13). Табличные значения ф даны с учетом г п и т]р, поэтому общий к. п. д. червячной передачи определяют по формуле  [c.384]

Высокие скорости скольжения и неблагоприятные условия смазки требуют, чтобы материалы червяка и колеса имели низкий коэффициент трения, повышенное сопротивление износу и пониженную склонность к заеданию. Выполнение червячной пары из однородных материалов не дает желаемых результатов, поэтому червяк и колесо изготовляют из различных материалов.  [c.385]

Относительная скорость точек червяка и червячного колеса, соприкасающихся в полюсе зацепления (скорость скольжения).  [c.645]

Для червячных передач характерны высокие скорости скольжения, и поэтому часто несущая способность лимитируется заеданием оно возникает из-за разрыва масляного слоя между трущимися поверхностями. Более благоприятные условия для образования непрерывного масляного слоя имеются в передачах с глобоидным червяком или с цилиндрическим червяком с вогнутыми зубьями.  [c.652]

Высокими антифрикционными свойствами обладают бронзы с относительно малыми значениями а < 30 кгс/мм , например, оловянные бронзы Бр. ОФ 10-1, Бр. ОФН, Бр. ОФ 6,5-0,15, они наиболее пригодны для червячных колес при большой скорости скольжения (vs > 5 м/с) и продолжительной работе без перерывов характерный вид разрушения зубьев колес из оловянных бронз — усталостное выкрашивание.  [c.653]

В червячной передаче векторы окружных скоростей червяка и червячного колеса взаимно перпендикулярны геометрическая (векторная) разность этих скоростей носит название скорости скольжения 0 . При выборе материала для червячного колеса ориентируются на величину Так, при м сек допустимо применять  [c.366]

При выборе материала для венца червячного колеса ориентируются на величину Так, при 2 м/сек допустимо применять чугунные червячные колеса при большей скорости скольжения колесо делают составным (бандажированным), как показано на рис. 3.84 колесный центр выполняют из чугуна, а венец — из бронзы. Бронза и сталь представляют собой антифрикционную пару  [c.398]

Скорость скольжения в червячной передаче. Во вре.мя работы витки червяка скользят по зубья.м колеса, как в винтовой паре. Скорость скольжения направлена по касательной к винтовой линии червяка (см. рис. 3.92). Скорость скольжения в передаче можно определить по следующей формуле  [c.480]

Высокая скорость скольжения в червячных передачах служит причиной пониженного к. п. д., повышенного износа, нагрева и заедания рабочих поверхностей.  [c.481]

Как видно из рисунка, скорость скольжения в червячном зацеплении больше окружной скорости червяка. Именно в этом состоит коренное отличие червячной передачи от зубчатой, у которой скорость скольжения значительно меньше окружной скорости.  [c.170]

Угол наклона контактных линий к вектору скорости скольжения имеет большое значение для работоспособности червячной передачи, так как от этого угла зависит характер трения.  [c.171]


После установления основных параметров передачи определяют размеры червяка и колеса, вычисляют скорость скольжения, находят расчетное значение к. п. д. и вращающего момента на валу червячного колеса, а затем проводят проверочный расчет, сравнивая расчетное контактное напряжение с допускаемым, причем недогрузка желательна не более 10%, а перегрузка не должна превышать 5%.  [c.175]

Ранее было установлено, что кинематической паре червяк — червячное колесо свойственны большие скорости скольжения, превышающие окружную скорость червяка, и, как следствие, механическое изнашивание, в частности изнашивание при заедании и усталостное изнашивание. Поэтому при выборе материалов червячной пары необходимо обеспечить хорошие антифрикционные и противозадирные свойства. Наилучшие результаты достигаются при сочетании высокотвердой стальной поверхности с антифрикционным материалом, обладающим необходимой объемной прочностью, например бронзой.  [c.179]

Для неответственных, слабонагруженных и тихоходных передач при скоростях скольжения <2 м/с возможно изготовление червячного колеса из чугуна или пластмасс (текстолит, полиамиды). В случае применения стальных хромированных червяков и чугунного червячного колеса предельная скорость скольжения может быть увеличена.  [c.180]

К. п. д. зацепления пары зубчатых колес, червячного зацепления и пары винт—гайка. Величина к. п. д. зацепления пары колес зависит от числа их зубьев и Zj. параметров зацепления, окружной силы Р и коэффициента трения /. Для стальных зубьев колес при нормальной смазке и шероховатости поверхности = 2,5-7-0,32 мкм принимают f = 0,08-5-0,12. Для стального червяка (винтового колеса) и бронзовых зубьев ведомого колеса принимают / = 0,10- 0,05 при скорости скольжения у< к = 0,1-т-2 м/с соответственно.  [c.73]

Так как угол подъема у < 30°, то в червячной передаче Г2 < 1. а скорость скольжения Большое скольжение является  [c.378]

Выбор материала для изготовления червяка и червячного колеса определяется в основном скоростью скольжения витков червяка и зубьев колеса.  [c.382]

Материалы зубчатых венцов червячных колес по мере убьшания антизадирных и антифрикционных свойств и рекомендуемым для применения скоростям скольжения можно условно свести к трем группам (табл. 2.14)  [c.30]

Последовательное расположение контактных линий (/, 2, 3...) в процессе зацепления червячной пары показано на рис, 9.9. Там же показаны скорости скольжения, направление которых близко к направлению окружной скорости червяка, см. рис. 9.6 и формулу (9.8). В заштрихованной зоне направление почти совпадает с направлением контактных линий условия смазки здесь затруднены. Повтому при больших нагрузках в этой зоне начинается заедание, которое распространяется па всю рабочую поверхность зуба.  [c.180]

Найти скорость скольжения в червячном зацеплении, если 2 = 2 = 4 мм, <7=11 = 1440 об1мин.  [c.181]

Материалы и допускаемые напряжения. Тяжелые условия работы червяка в червячной паре (большая скорость скольжения при малом числе зубьев, высокая угловая скорость, малый диаметр при относительно высокой длине между опорами) вызывают необходимость применения высококачественной углеродистой или легированной стали для его изготовления. Наиболее употребительными являются цементуемые стали марок 15Х, 20Х, 12ХНЗА, 18ХГТ, 20ХФ, имею-  [c.318]

В е н ц ы червячных колес при скоростях скольжения U 4 м/с выполняют из оловянно-фосфористых бронз Бр010Н1Ф1,  [c.236]

Глобоидные передачи. Несущую спо собность червячных передач можно существенно повысить, если выполнить червяк и колесо глобоидными (рис. 11.16, 11.17). При этом увеличиваются числа зубьев в зацеплении, приведенные радиусы кривизны и контактные линии а чаиеп.леиии располагаются под большим углом к направлению скорости скольжения, что у. уч-шает условия для образования масляных клиньев в зацеплении. Несущая способность глобоидных передач при условии точного изготовления и надлежащего охлаждения около полутора раз больше, чем передач с цилиндрическими червяками с линейчатыми рабочими поверхностями.  [c.246]

Достоинствами червячной передачи являются компактность конструкции при больших передаточных числах, плавность и бесшумность работы, возможность самоторможения. Недостатки — повышенная скорость скольжения и вследствие этого сравнительно низкий к.п.д., необходимость применения для колес дорогих анти-фрикционнных материалов.  [c.401]

Для червячных передач наиболее распространена смазка окунанием червяка или червячного колеса в масляную ванну смазочный материал рекомендуется выбирать в зависимости от скорости скольжения в зацеплении R условий работы червячной пары по табл. 4. Для быстро-кодных передач допустимо применение масел с антизадирнымн присадками, в качестве которых используют растительные и животные жиры.  [c.746]

На поверхности зуба (рис. 13.15, а) глобоидного колеса можно выделить три характерные части. На участке II поверхность зуба является огибающей поверхности витка червяка, на ней располагаются контактные линии. На участках I и III поверхность зуба является линейчатой и воспроизводится режущей кромкой инструмента контактные линии на этих участках отсутствуют. Линия АВ, общая для участков II и III, смыкание которых происходит с переломом, находится в средней торцовой плоскости Q. В этой плоскости все зубья червячного колеса, охватываемые червяком, контактируют G червяком по этой линии на всей рабочей высоте витков. Часть зубьев червячного колеса, охватываемых червяком, помимо касания в главной плоскости имеет еще одну контактную линию, перемещающуюся по участку II поверхности зуба (некоторые положения этой линии /, 2, 3 показаны на рис. 13.15, а). Все контактные линии располагаются в направлении к центру колеса, вследствие чего векторы скорости скольжения образуют с ними углы ф, близкие к 90°, что способствует образованию >атойчивого масляного клина и определяют по сравнению с цилиндрическими червячными механизмами более высокую работоспособность. Геометрическое  [c.157]


Кроме скорости скольжения величина коэф(]эициента трения зависит от шероховатости поверхностей зацепления, а также от качества смазки. В соответствии с этим к шероховатости рабочих поверхностей червяков и червячных колес предъявляются повышенные требования по сравнению с зубчатыми передачами и применяют сорта смазок с большей, чем у зубчатых передач, вязкостью.  [c.482]

Значение приведенного коэффициента трения кроме скорости скольжения зависит также от материалов червяка и червячного колеса, шероховатости активных поверхностей, качества смазки. Ориентировочные значения приведенного угла трения ф (для червячных пар сталь — оловянная бронза) в зависимости от скорости скольжения приведены в табл. 8.3 (меньшие значения для шлифованных червяков для колес из безоловян-ных бронз значения увеличивают примерно на 40%).  [c.171]

Наилучшими антифрикционными и противозадирными свойствами обладают оловянные бронзы (например, БрОФ10-1, БрОНФ и др.), однако они дороги и дефицитны, и поэтому применяются только для ответственных передач с высокими скоростями скольжения (и > 7 м/с). Нагрузочная способность передач с червячными колесами из оловянных бронз лимитируется усталостным изнашиванием и от скорости скольжения практически не зависит, поэтому верхний предел этой скорости для таких передач не ограничивают, а допускаемые контактные напряжения от нее не зависят. Наряду с этим срок службы венцов червячных колес в значительной степени зависит от способа отливки заготовок (в песок, в кокиль, центробежная), поэтому допускаемые напряжения зависят от способа отливки, и, кроме того, от твердости активной поверхности витков червяка. Значения допускаемых контактных напряжений [а о ] для червячных колес из оловянных бронз и стальных червяков при базе испытаний 10 циклов нагружения приведены  [c.180]

Скольжение в червячном зацеплении. Витки червяка скользят при движении по зубьям колеса. Когда точка контакта совпадает с полюсом зацепления, относительная скорость Сск направлена по касательной к винтовой линии витка червяка (рис. 21.5). В этом положении окружная скорость червяка i = (ui /)/2 и окружная скорость колеса V2 = U2I/2/2 связаны со скоростью скольжения соотношениями  [c.377]


Смотреть страницы где упоминается термин Червячная Скорость скольжения : [c.17]    [c.319]    [c.386]    [c.247]    [c.247]    [c.366]    [c.398]    [c.170]    [c.174]    [c.181]   
Проектирование механических передач Издание 4 (1976) -- [ c.115 ]



ПОИСК



Определение усилий, возникающих в червяке и червячном колесе, и скорость скольжения

Скорость скольжения

Скорость скольжения в червячной передаче



© 2025 Mash-xxl.info Реклама на сайте