Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрические твердых диэлектриках

Механизм пробоя диэлектриков может иметь различный характер. Основными видами пробоя твердых диэлектриков являются электрический и тепловой. Электрический пробой представляет собой разрушение диэлектрика силами электрического поля и сопровождается образованием электронных лавин. Тепловой пробой обусловлен нагревом диэлектрика до критической температуры вследствие диэлектрических потерь при нарушении в диэлектрике теплового равновесия. Значение ир при электрическом пробое составляет примерно 100— 1000 МВ/м, а при тепловом — 1 — 10 МВ/м.  [c.543]


Эта формула пригодна для газообразных, но в ряде случаев с большим или меньшим приближением может быть применена также для жидких и твердых диэлектриков.) Таким образом, по физическому смыслу диэлектрическая проницаемость — количественная мера интенсивности процесса поляризации диэлектриков. Концентрация N поляризующихся частиц невелика в газах и намного выше в жидких и твердых диэлектриках. Поляризуемость частицы а зависит от механизма поляризации, определяемого природой диэлектрика.  [c.544]

Газы в обычных условиях характеризуются высоким удельным сопротивлением и очень малыми диэлектрическими потерями. К достоинствам газов относятся также восстановление электроизоляционных свойств после пробоя и отсутствие старения (ухудшение свойств со временем). Недостатком их является невысокая (по сравнению с жидкими и твердыми диэлектриками) электрическая прочность при нормальном давлении. Для увеличения электрической прочности используют как повышение давления газов, так и глубокое их разрежение. Повысить электрическую прочность газовой изоляции можно также, применяя электроотрицательные газы. Молекулы этих газов, содержащие обычно атомы фтора, хлора и других галогенов, способны захватывать свободные электроны и становиться малоподвижными отрицательными ионами. Удаление подвижных электронов затрудняет развитие электрического разряда, вследствие чего электрическая прочность газа возрастает.  [c.545]

Закономерности, отмеченные выше для диэлектрических потерь в полярных жидкостях ( 2-3, б), в основном соответствуют и закономерностям в твердых полярных диэлектриках. В органических твердых диэлектриках диэлектрические потери, связанные с дипольной поляризацией, изучены более полно, чем в неорганических.  [c.56]

Значение диэлектрической проницаемости газообразных диэлектриков мало отличается от 1, а для неполярных жидких и твердых диэлектриков не превышает 2,5.  [c.153]

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами. В таких материалах образуются ионы, которые в ходе тепловых колебаний перебрасываются из положений временного закрепления на расстояния, соизмеримые с расстояниями между частицами (10 м), и закрепляются в новых положениях. В электрическом поле перебросы становятся направленными. В результате в диэлектрике возникает различие в расположении центров положительного и отрицательного зарядов, т. е. появляется электрический момент. Такой процесс называют ионно-релаксационной поляризацией. С ростом температуры число ионов, перебрасываемых в новые положения, увеличивается, поэтому растут поляризованность и диэлектрическая проницаемость. На рис. 5.16 приведена зависимость е, от температуры для натриево-силикатного стекла, в структуре которого имеют место слабосвязанные ионы.  [c.156]


Диэлектрические потери в твердых диэлектриках. В неполярных твердых диэлектриках диэлектрические потери вызваны электропроводностью, а в полярных — электропроводностью и дипольной поляризацией. Выше (см. 5.3) отмечалось, что в твердых диэлектриках дипольная поляризация представляет собой деформацию звеньев, сегментов или ориентацию полярных групп молекул в электрическом поле. Изменение tg б от температуры и частоты для твердых неполярных и полярных диэлектриков такие же, как и для жидких (рис. 5.21—5.23).  [c.164]

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ  [c.12]

Все перечисленные в 1.1 виды поляризации относятся к твердым диэлектрикам. В неполярных твердых диэлектриках наблюдается электронная поляризация. В этом случае диэлектрическая проницаемость равна квадрату коэффициента преломления. Сюда относятся валентные кристаллы (алмаз), молекулярные кристаллы, не содержащие полярных групп (нафталин, сера), неполярные полимеры (полиэтилен, политетрафторэтилен, полипропилен, полиизобутилен, полистирол). Для неполярных диэлектриков температурный коэффициент диэлектрической проницаемости определяется изменением числа молекул в единице объема и может быть вычислен по формуле, применяемой для неполярных жидкостей  [c.12]

Диэлектрические потери в твердых диэлектриках  [c.25]

Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 С  [c.26]

Твердые диэлектрики, представляющие собой ионные кристаллы с неплотной упаковкой частиц (например, электротехнический фарфор), в которых наблюдается, помимо электронной и ионной, также и ионно-релаксационная поляризация, характеризуются в большинстве случаев сравнительно невысоким значением диэлектрической проницаемости и большим положительным температурным коэффициентом ТКе, (рис. 1-7).  [c.26]

Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.  [c.43]

ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ В ТВЕРДЫХ ДИЭЛЕКТРИКАХ  [c.53]

Диэлектрические потери в твердых диэлектриках необходимо рассматривать в связи с их структурой. Твердые вещества обладают разнообразным составом и строением в них возможны все виды диэлектрических потерь.  [c.53]

Диоксид титана существует в различных кристаллических модификациях одна из них — рутил — имеет в направлении главной кристаллографической оси диэлектрическую проницаемость е,. = 173. В керамических материалах на основе рутила благодаря беспорядочному расположению в пространстве кристаллов рутила и наличию различных добавок диэлектрическая проницаемость меньше указанного значения, но все же превосходит большинства применяемых твердых диэлектриков.  [c.173]

Диэлектрические потери являются частью электрической энергии, которая рассеивается и превращается в тепло при воздействии на материал электрического поля. Физическая природа потерь зависит от структуры твердого диэлектрика или от вида возникающей поляризации.  [c.100]

Создать технологию с непрерывным процессом разрушения массива затруднительно, поэтому дальнейшие исследования были направлены на то, чтобы снять указанные выше ограничения в условиях осуществления электрического пробоя. Требовалось создать условия, при которых пробой породы мог бы быть осуществим даже при наложении электродов только с одной свободной поверхности. В исследованиях электрической прочности жидких и твердых диэлектриков на косоугольной волне импульсного напряжения было установлено, что их вольт-временные зависимости пробоя (далее вольт-секундные характеристики - в.с.х.) характеризуются различным коэффициентом импульса ki. Данный коэффициент определяет степень роста напряжения пробоя на импульсном напряжении по отношению к напряжению пробоя на статическом напряжении (напряжении постоянного тока, тока промышленной частоты). С уменьшением времени экспозиции импульсного напряжения прочность жидких диэлектриков растет быстрее, чем для твердых диэлектриков, что приводит к инверсии соотношения электрических прочностей сред /2/. На статическом напряжении электрическая прочность твердых диэлектриков, как правило, превышает прочность жидких диэлектриков в одинаковых разрядных промежутках. Однако на импульсном напряжении при экспозиции напряжения менее 10- с электрическая прочность диэлектрических жидкостей и даже технической воды возрастает настолько, что становится выше прочности твердых диэлектриков и горных пород.  [c.10]


Наименьшую диэлектрическую проницаемость имеет вакуум (е = 1), диэлектрическая проницаемость воздуха 1,00058, жидких и твердых диэлектриков — 2... 17, а сегнетоэлектриков — 1500...7500.  [c.94]

Характерной особенностью диэлектрика является способность поляризоваться в электрическом поле. Сущность поляризации заключается в смещении связанных электрических зарядов под действием поля. Смещенные заряды создают собственное внутреннее электрическое поле, которое направлено противоположно внешнему. Мерой поляризации является диэлектрическая проницаемость е. Она оценивается отношением емкостей Сд/Со конденсатора. Емкость Сд определяется, когда между пластинами конденсатора находится диэлектрик, а емкость Со — когда вместо диэлектрика — вакуум. В твердом диэлектрике одновременно проявляется несколько видов поляризации которые в сумме определяют значение е и его зависимость от температуры и частоты поля. Конструкционные диэлектрики общего назначения имеют небольшое значение е (не более 10 -12). Диэлектрики, которые используют в конденсаторах, должны иметь высокие значения е, чтобы увеличить емкость конденсатора. У конденсаторных диэлектриков е изменяется от 12 - 15 до 100000.  [c.599]

Для диэлектриков, в которых преобладает электронная поляризация (из твердых диэлектриков это ковалентные молекулярные кристаллы), характерны малая зависимость диэлектрической проницаемости от температуры и исключительно малая величина диэлектрических потерь на высоких частотах. Эти диэлектрики отличаются также малым поглощением не только в оптической, но и в инфракрасной области спектра.  [c.67]

Диэлектрические потери, характеризующие превращение части электрической энергии в тепловую, являются важным электрофизическим параметром диэлектрика. Величина этих потерь, а также зависимость их от частоты и температуры свидетельствуют о тех или иных особенностях механизма поляризации. Диэлектрические потери обычно в значительной степени изменяются при введении в диэлектрик различного рода примесей. В твердых диэлектриках в зависимости от концентрации примесей или структурных дефектов величина диэлектрических потерь может изменяться в десятки и сотни раз, в то время как изменение величины  [c.73]

Разряд в воздухе вдоль поверхности твердого диэлектрика называют поверхностным разрядом или поверхностным перекрытием. Внесение твердого диэлектрика в воздушный промежуток существенно снижает его разрядное напряжение, даже если цилиндрический образец поместить между параллельными пластинами, создающими в промежутке однородное поле. Хотя в этом случае образующие цилиндра совпадают с направлением силовых линий электрического поля и поэтому поле, казалось бы, должно оставаться однородным, разряд всегда развивается в воздухе вдоль поверхности твердого диэлектрика при более низком напряжении, чем в чисто воздушном промежутке без цилиндра из твердого диэлектрика. На рис. 23.6 приведены зависимости напряжения поверхностного разряда в воздухе вдоль изоляционных цилиндров из различных твердых диэлектриков при частоте 50 Гц от высоты цилиндра (длины разрядного промежутка). Снижение разрядного напряжения обусловлено нарушением однородности электрического поля, так как пленка влаги на поверхности диэлектрического цилиндра имеет неодинаковую толщину в различных участах вдоль длины образца, в результате чего напряжение вдоль цилиндра распределяется неравномерно. Поэтому гидрофобный (несмачивающийся) парафин в меньшей степени снижает разрядное напряжение по сравнению с чисто воздушным промежутком, чем гидрофильный (смачивающийся) фарфор или стекло. При  [c.547]

Образцы твердых диэлектриков, применяемые при измерениях е и tg б в диапазоне частот 100—5-10 Гц имеют форму круглых или квадратных пластин или трубок. Диаметр или ширина пластины должны быть 25—150 мм, а длина трубчатого образца 100—300 мм. Отношение диаметра образца к его толщине должно быть не менееЮ. При большой диэлектрической проницаемости материала (е>30) допускается применять образцы меньшего диаметра, но не менее 10 мм.  [c.63]

Структурная поляризация обусловлена наличием слоев с различной проводимостью, образованием объемных зарядов, особенно при высоких градиентах напряжения (высоковольтная поляризация). Происходит в твердых диэлектриках слоистой или другой неоднородной структуры (гетинаксы, текстолнты, миканиты, бумажно-бакелитовые изоляторы проходные), связана с большими диэлектрическими потерями, как поляризация -замедленного типа.  [c.8]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]


Целый ряд твердых диэлектриков, применяемых в технике, представляет собой сложные системы изоляции или смеси двух или нескольких веществ. Для двухфазной смеси предложены формулы, которые позволяют производить оценку диэлектрической проницаемости смеси, если известны Si и г. и объемные концентрации компонента. Для диэлектриков, представляющих собой смесь двух составляющих, Лихте-неккер предложил формулу  [c.15]

Твердые диэлектрики характеризуются разнообразным составом и строением, и в соответствии с этим в них возможны все виды.диэлектрических потерь. Диэлектрические потери у твердых диэлектриков следует рассматривать по следующим структурным группам неполярные диэлектрики, полярные диэлектрики, ионные кристаллы, сегнетоэлек-трики, сложные (композиционные) диэлектрики не однородной структуры.  [c.25]

В твердых диэлектриках сложной, неоднородной структуры, у ко-.торых одновременно представлены несколько фаз (аморфная, кристаллическая, газовая, жидкая), диэлектрические потери зависят от по-  [c.26]

При повышении напряженности электрического поля в твердом диэлектрике, так же как в жодком и газообразном возникают ионизационные процессы, связанные с увеличением сквозного тока, высоковольтной поляризацией, ударной ионизацией, диэлектрическими потерями, нагревом диэлектрика. В сильных полях нарушается закон Ома плотность тока растет по экспоненциальному закону в функции напряженности поля напряжение начинает падать, а ток резко возрастает, стремясь к бесконечности — наступает пробой диэлектрика. В случае большой мощности ток расплавляет материал диэлектрика, прожигает  [c.36]

Процесс пробоя твердого диэлектрика можно подразделить на два этапа 1) нарушение нормального процесса электропроводности резким возрастанием тока вследствие ударной ионизации, или ростом диэлектрических иотерь и увеличением нагрева диэлектрика 2) тепловое и механическое разрушение диэлектрика, образование сквозного проводящего канала.  [c.37]

Теория электрического пробоя. В основе электрического пробоя твердых диэлектриков лежат электронные процессы ударной ионизации, которые и объясняют пробой твердого диэлектрика импульсами напряжения длительностью 10 —10 сек. В этом процессе исключается влияние диэлектрических потерь и нагрева материала под действием напряжения. Как и в газах, пробой наступает мгновенно, не зависит от времени действия напряжения и связан с разрушением молекулярной и кристаллической структуры материала. При электрическом пробое решающим фактором является напряженность электрического поля, так как именно она обусловливает процесс образования и движения электронов в диэлектрике. Этим и, определяются закономериости изменения пробивного напряжения от времени, температуры и частоты, которые наблюдаются при электрическом пробое.  [c.39]

Диэлектрическая проницаемость твердых тел зависит от структурных особенностей твердого диэлектрика. В 1вердых телах возможны все виды поляризации. Для твердых неполярных диэлектриков характерны те же закономерности, что и для неполярных жидкостей и газов. Это подтверждается данными табл. 1-5 и зависимостью е, (/) для парафина, показанной на рис. 1-5. При переходе парафина из твердого состояния в жидкое (температура плавления около  [c.25]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладаьзт электронной и ионной поляризациями и имеют диэлектрическую проницаемость, изменяющуюся в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев положителен. Примером одного из таких диэлектриков служит КС1 (рис. 1-6).  [c.26]

Кроме того, в твердых диэлектриках наблюдаются электроннорелаксационная, резонансная, структурная и самопроизвольная (спонтанная) поляризации, которые в полимерных материалах, как правило, не проявляются. Таким образом, пз всех рассмотренных видов поляризации стеклопластики на основе полиэфирных, эпоксидных, фенольно-формальдегидных и других смол следует отнести к материалам, которые обладают почти всеми видами поляризации одновременно, так как смолы обладают электронной и диполы-ю-релаксациоиной поляризациями одновременно, а стеклонаполнитель — ионно-релаксационной поляризацией. Основной предпосылкой для определения плотности полимерных материалов служит формула Клаузиуса—Моссоти, связывающая электрические свойства молекул, диэлектрическую проницаемость, поляризуемость и дипольный момент с плотностью и молекулярной массой  [c.98]

Таким образом, в твердых диэлектриках могут быть потери, обусловленные поляризацией, сквозной электропроводностью, неоднородностью структуры и ионизацией. Потери за счет электронной поляризации весьма незначительны. К материалам с такими потерями относят полиэтилен, фторопласт, полистирол, отвержденную полиэфирную смолу. И наоборот, материалы с ди-польно-релаксапионной и ионно-релаксационной поляризацией обладают большими потерями. К таким материалам относят полиуретаны, эбонит, оргстекло, фенолформальдегидные и совмещенные эпоксидные смолы, неорганические стекла. Но чаще всего в твердых неоднородных диэлектриках, какими являются стеклопластики, могут быть все виды потерь одновременно. Величину диэлектрических потерь можно характеризовать удельными по-  [c.100]

В первых экспериментальных наблюдениях явления внедрения разряда в поверхностный слой твердого диэлектрика (А.Т.Чепиков) при использовании в качестве модельного материала пластичного фторопласта при пробое в толще материала (в поле продольного среза образца) отчетливо фиксировался обугливающийся след от канала разряда, а на образцах горных пород - воронка откола материала. Этими опытами были начаты систематические исследования физических основ способа и многообразных технологических его применений. Данная разновидность способа разрушения твердых тел электрическим пробоем, использующая эффект инверсии электрической прочности сред на импульсном напряжении, получила название электроимпульсного способа разрушения материалов (ЭИ). Работы многих исследователей свидетельствуют, что гамма пород и материалов, склонных к ЭИ-разрушению, достаточно обширна. Главными предпосылками для разрушения материалов таким способом является их склонность к электрическому пробою и хрупкому разрушению в условиях импульсного силового нагружения. Электрическому пробою подвержено большинство горных пород и руд, различные искусственные материалы -продукты пффаботки или синтеза минерального сырья, а именно те, которые по электрическим свойствам могут быть отнесены к диэлектрикам и слабопроводящим материалам. За пределами возможностей способа остаются лишь руды со сплошными массивными включениями электропроводящих минералов. По условиям разрушения к трудно разрушаемым из диэлектрических материалов относятся лишь не склонные к хрупкому разрушению в естественных условиях пластмассы и резины. Но и в данном случае применение метода охрупчивания материалов глубоким охлаждением делает ЭИ-метод разрушения достаточно эффективным."  [c.12]


Наименьшую диэлектрическую проницаемость имеет вакуум (бц= 1), диэлектрическая проницаемость воздуха равна 1,00058 жидких и твердых диэлектриков — от 2 до 17, а сегнетоэлектри-ков — от 1500 до 7500. Величины диэлектрической проницаемости для различных материалов приведены в приложении.  [c.149]

Количественно они характеризуются величиной тангенса угла диэлектрических потерь tg 5 (угол 5 — разность фаз между векторами поляризации электрических зарядов и напряженности электрического поля). У твердых диэлектриков величины диэлектрических потерь находятся в пределах 2...5- 10 . Наименьщими значениями диэлектрических потерь обладают неионизированные газы, которые все являются диэлектриками.  [c.94]

Рассмотрим кратко причину появления этих разрядов. Проводимость газа в небольших полях обычно намного меньше, чем проводимость твердого диэлектрика-полимера (аг сгп). Поэтому на низких частотах и при постоянном напряжении напряженность электрического поля в газовом промежутке выше, чем в окружающем промежуток полимере. Кроме того, диэлектрическая проницаемость газа меньше, чем у полимера (ег<8п) поэтому и при повышенных частотах, когда напряженность поля распределяется обратно пропорционально величине в. получается, что газовый промежуток опять электрически нагружен больше, чем полимер. Учитывая то, что пробивная напряженность в газах гораздо меньше, чем в твердых диэлектриках, естественно ожидать, что по мере повышения электрического напряжения пробой в газовых порах будет возникать задолго до возможного пробоя полимера. Напряжение, при котором происходит это явление, называют напряжением возникновения дробных разрядов, или напряжением ионизации. Дробными эти разряды называют потому, что они не закорачивают полностью электроды и быстро погасают. Дело в том, что после пробоя газового включения в нем образуется плазма с высокой проницаемостью ( 8пл > 8п) и большой проводимостью (сгпл>сгп). Поэтому напряженность электрического поля немедленно перераспределяется так, что электрически нагруженным оказывается полимер, а напряжение в газовом промежутке (теперь уже плазменном) падает почти до нуля. Вследствие этого разряд прерывается, ио  [c.59]

С электронной поляризацией, обусловленной тепловым движением, связан довольно широкий круг процессов, происходящих в твердых диэлектриках фотодиэлектрический эффект в кристаллах люминесцирующих широкозонных полупроводников диэлектрическая релаксация, обусловленная наличием центров окрашивания в ионных кристаллах, диэлектрическая релаксация электронов, захваченны.х донорны.ми центрами в оксидных полупроводниках наконец, существенное повышение на низких частотах диэлектрической проницаемости в поликристаллических веществах типа рутила, перовскита или стронций-висмут титаната (СВТ). Последний из перечисленных диэлектриков находит важное техническое применение.  [c.72]

Ионная тепловая поляризация.. Механизм этой поляризации детально описан в монографии Сканави [1]. Ионная тепловая поляризация воз.можна только в твердых диэлектриках и преобладает в веществах с выраженной нерегулярностью структуры в стеклах, ситаллах и диэлектрической керамике. Концентрация дефектов кристаллической структуры в этих диэлектриках чрезвычайно велика в керамике и ситаллах—на границах кристаллов, в стеклах же вообще нарушается дальний порядок в расположении атомов. Однако тепловая ионная поляризация возможна и в монокристаллах — в окрестности структурных дефектов.  [c.72]


Смотреть страницы где упоминается термин Диэлектрические твердых диэлектриках : [c.56]    [c.56]    [c.72]    [c.102]    [c.318]    [c.212]   
Электротехнические материалы (1976) -- [ c.56 , c.61 ]

Электротехнические материалы Издание 3 (1976) -- [ c.56 , c.61 ]



ПОИСК



Диэлектрик

Диэлектрическая (-йе)

Диэлектрическая проницаемость твердых диэлектрико

Диэлектрическая проницаемость твердых диэлектриков

Диэлектрические потери в твердых диэлектриках

Лабораторная работа 2. Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков

Твердые диэлектрики



© 2025 Mash-xxl.info Реклама на сайте