Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрическая проницаемость твердых диэлектрико

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ  [c.12]

Диэлектрическая проницаемость твердых диэлектриков  [c.74]

СО КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ (ТВЕРДЫЕ ДИЭЛЕКТРИКИ) (КОМПЛЕКТ ТД2)  [c.111]

Значение диэлектрической проницаемости газообразных диэлектриков мало отличается от 1, а для неполярных жидких и твердых диэлектриков не превышает 2,5.  [c.153]

К числу показателей, непосредственно определяющих рабочие параметры электрических аппаратов, в первую очередь следует отнести диэлектрическую проницаемость жидкого диэлектрика е. Например, удельная емкость конденсаторов определяется значениями е жидкости, пропитывающей твердую изоляцию. Распределение напряженностей между твердым и жидким диэлектриком в высоковольтной аппаратуре переменного тока определяется соотношением величин е этих материалов.  [c.23]


Диэлектрическая проницаемость твердых сложных диэлектриков, представляющих собой смесь компонентов с  [c.75]

Диэлектрическая проницаемость твердых тел может принимать самые различные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика. В твердых телах возможны все виды поляризации, указанные на рис. 21.  [c.49]

Диэлектрическая проницаемость твердых тел может принимать самые различные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика.  [c.36]

Ионная поляризация (Си Qк на схеме рис. 1-2) характерна для твердых тел с ионным строением и обусловливается смещением упруго связанных ионов. С повышением температуры она усиливается в результате ослабления упругих сил, действующих между ионами, из-за увеличения расстояния между ними при тепловом расширении, и в большинстве случаев температурный коэффициент диэлектрической проницаемости ионных диэлектриков оказывается положительным.  [c.22]

ИЗМЕРЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И ТАНГЕНСА УГЛА ДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ  [c.12]

При пропитке, т. е. при заполнении пор диэлектрика другим, жидким или твердым диэлектриком, наблюдаются вполне определенные изменения электрических характеристик. Замещение воздуха в порах приводит к увеличению электрической прочности, так как воздушные включения обладают меньшей электрической прочностью, чем жидкие и твердые диэлектрики к тому же в воздушных прослойках при переменных напряжениях всегда будут большие электрические напряженности, которые при последовательном соединении разнородных диэлектриков распределяются обратно пропорционально диэлектрическим проницаемостям этих диэлектриков. Ионизация внутренних воздушных пор приводит к увеличению диэлектрических потерь, искажению формы поля и может вызвать разрушение изоляции. При достаточно низких напряжениях, не вызывающих ударной 118  [c.118]

Эта формула пригодна для газообразных, но в ряде случаев с большим или меньшим приближением может быть применена также для жидких и твердых диэлектриков.) Таким образом, по физическому смыслу диэлектрическая проницаемость — количественная мера интенсивности процесса поляризации диэлектриков. Концентрация N поляризующихся частиц невелика в газах и намного выше в жидких и твердых диэлектриках. Поляризуемость частицы а зависит от механизма поляризации, определяемого природой диэлектрика.  [c.544]

В жидких и твердых телах электронная поляризованность и Ег значительно выше. Так, в жидком диэлектрике — трансформаторном масле, являющемся продуктом переработки нефти, диэлектрическая проницаемость достигает 2,2-2,4.  [c.30]

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами. В таких материалах образуются ионы, которые в ходе тепловых колебаний перебрасываются из положений временного закрепления на расстояния, соизмеримые с расстояниями между частицами (10 м), и закрепляются в новых положениях. В электрическом поле перебросы становятся направленными. В результате в диэлектрике возникает различие в расположении центров положительного и отрицательного зарядов, т. е. появляется электрический момент. Такой процесс называют ионно-релаксационной поляризацией. С ростом температуры число ионов, перебрасываемых в новые положения, увеличивается, поэтому растут поляризованность и диэлектрическая проницаемость. На рис. 5.16 приведена зависимость е, от температуры для натриево-силикатного стекла, в структуре которого имеют место слабосвязанные ионы.  [c.156]


Все перечисленные в 1.1 виды поляризации относятся к твердым диэлектрикам. В неполярных твердых диэлектриках наблюдается электронная поляризация. В этом случае диэлектрическая проницаемость равна квадрату коэффициента преломления. Сюда относятся валентные кристаллы (алмаз), молекулярные кристаллы, не содержащие полярных групп (нафталин, сера), неполярные полимеры (полиэтилен, политетрафторэтилен, полипропилен, полиизобутилен, полистирол). Для неполярных диэлектриков температурный коэффициент диэлектрической проницаемости определяется изменением числа молекул в единице объема и может быть вычислен по формуле, применяемой для неполярных жидкостей  [c.12]

Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 С  [c.26]

Твердые диэлектрики, представляющие собой ионные кристаллы с неплотной упаковкой частиц (например, электротехнический фарфор), в которых наблюдается, помимо электронной и ионной, также и ионно-релаксационная поляризация, характеризуются в большинстве случаев сравнительно невысоким значением диэлектрической проницаемости и большим положительным температурным коэффициентом ТКе, (рис. 1-7).  [c.26]

Диоксид титана существует в различных кристаллических модификациях одна из них — рутил — имеет в направлении главной кристаллографической оси диэлектрическую проницаемость е,. = 173. В керамических материалах на основе рутила благодаря беспорядочному расположению в пространстве кристаллов рутила и наличию различных добавок диэлектрическая проницаемость меньше указанного значения, но все же превосходит большинства применяемых твердых диэлектриков.  [c.173]

Наименьшую диэлектрическую проницаемость имеет вакуум (е = 1), диэлектрическая проницаемость воздуха 1,00058, жидких и твердых диэлектриков — 2... 17, а сегнетоэлектриков — 1500...7500.  [c.94]

Характерной особенностью диэлектрика является способность поляризоваться в электрическом поле. Сущность поляризации заключается в смещении связанных электрических зарядов под действием поля. Смещенные заряды создают собственное внутреннее электрическое поле, которое направлено противоположно внешнему. Мерой поляризации является диэлектрическая проницаемость е. Она оценивается отношением емкостей Сд/Со конденсатора. Емкость Сд определяется, когда между пластинами конденсатора находится диэлектрик, а емкость Со — когда вместо диэлектрика — вакуум. В твердом диэлектрике одновременно проявляется несколько видов поляризации которые в сумме определяют значение е и его зависимость от температуры и частоты поля. Конструкционные диэлектрики общего назначения имеют небольшое значение е (не более 10 -12). Диэлектрики, которые используют в конденсаторах, должны иметь высокие значения е, чтобы увеличить емкость конденсатора. У конденсаторных диэлектриков е изменяется от 12 - 15 до 100000.  [c.599]

Для диэлектриков, в которых преобладает электронная поляризация (из твердых диэлектриков это ковалентные молекулярные кристаллы), характерны малая зависимость диэлектрической проницаемости от температуры и исключительно малая величина диэлектрических потерь на высоких частотах. Эти диэлектрики отличаются также малым поглощением не только в оптической, но и в инфракрасной области спектра.  [c.67]

Водопьянов К. А. и Ворожцов Б. И., К вопросу об измерении угла диэлектрических потерь и диэлектрической проницаемости твердых диэлектриков в области ультракоротких и дециметровых волн, Журнал технической физики , 1952, № 11.  [c.203]

При выводе (2-80) и (2-82), как и других инженерных формул для расчета диэлектрической проницаемости твердого диэлектрика с газовыми включениями [пример — формула (2-85)], значение егаза принимается равным единице, а плотность газа — равной нулю. Формула (2-81), если в ней принять 8п.м = 1, преобразуется в (2-80), а (2-82), если в ней принять k=0, в (2-81).  [c.138]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]

Диэлектрическая проницаемость твердых тел зависит от структурных особенностей твердого диэлектрика. В 1вердых телах возможны все виды поляризации. Для твердых неполярных диэлектриков характерны те же закономерности, что и для неполярных жидкостей и газов. Это подтверждается данными табл. 1-5 и зависимостью е, (/) для парафина, показанной на рис. 1-5. При переходе парафина из твердого состояния в жидкое (температура плавления около  [c.25]


Диэлектрическая проницаемость твердых сложных диэлектриков, представляющих собой смесь компонентов с различными диэлектрическими проницаемостями, может быть в первом приближении (при не слишком большом различии Е компонентов) определена на основании уравнения Лихтенеккера, которое в общем случае имеет в виду расчет самых различных свойств (например теплопроводности, показателя преломления и др.)  [c.35]

При нропитке, т. е. при заполнении пор диэлектрика другим, жидким или твердым диэлектриком, наблюдаются вполне определенные изменения электрических характеристик. Замещение воздуха в порах приводит к увеличению электрической прочности, так как воздушные включения обладают меньшей электрической прочностью, чем жидкие и твердые диэлектрики к тому же в воздушных прослойках при переменных напряжениях всегда будут большие электрические напряженности, которые при последовательном соединении разнородных диэлектриков распределяются обратно пропорционально диэлектрическим проницаемостям этих диэлектриков. Ионизация внутренних воздушных пор приводит к увеличению диэлектрических потерь, искажению формы поля и может вызвать разрушение изоляции. При достаточно низких напряжениях, не вызывающих ударной ионизации воздушных прослоек, наличие последних в последовательном соединении с твердой изоляцией снижает tg б за счет уменьшения токов утечки, а также снижает емкость изоляции. На рис. 3-5 показана зависимость tg O и емкости изоляции из двух последовательно соединенных слоев — стекла и воздуха и одного стекла без воздушного зазора между ним и электродами — от напряжения. При малых напряжениях наличие воздушного зазора сказывается благоприятно, но при некотором значении напряжения, вызывающем ионизацию воздуха, tg б резко возрастает, увеличивается и емкость. Сочетание твердой изоляции с газообразной при нормальных давлениях допустимо только при низких напряжениях, гарантирующих отсутствие ионизации. Примером является бумажно-воздушная изоляция телефонных кабелей. Для получения малой величины tg o пропитанного материала необходимо, чтобы пропитывающий диэлектрик обладал возможно меньшим tg б. Для пропитки бумажных конденсаторов применяют материалы с повышенной диэлектрической проницаемостью в целях получения большей удельной емкости.  [c.101]

Образцовые меры для измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектрико]в...............  [c.106]

Образцы твердых диэлектриков, применяемые при измерениях е и tg б в диапазоне частот 100—5-10 Гц имеют форму круглых или квадратных пластин или трубок. Диаметр или ширина пластины должны быть 25—150 мм, а длина трубчатого образца 100—300 мм. Отношение диаметра образца к его толщине должно быть не менееЮ. При большой диэлектрической проницаемости материала (е>30) допускается применять образцы меньшего диаметра, но не менее 10 мм.  [c.63]

Целый ряд твердых диэлектриков, применяемых в технике, представляет собой сложные системы изоляции или смеси двух или нескольких веществ. Для двухфазной смеси предложены формулы, которые позволяют производить оценку диэлектрической проницаемости смеси, если известны Si и г. и объемные концентрации компонента. Для диэлектриков, представляющих собой смесь двух составляющих, Лихте-неккер предложил формулу  [c.15]

Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладаьзт электронной и ионной поляризациями и имеют диэлектрическую проницаемость, изменяющуюся в широких пределах. Температурный коэффициент диэлектрической проницаемости ионных кристаллов в большинстве случаев положителен. Примером одного из таких диэлектриков служит КС1 (рис. 1-6).  [c.26]

Кроме того, в твердых диэлектриках наблюдаются электроннорелаксационная, резонансная, структурная и самопроизвольная (спонтанная) поляризации, которые в полимерных материалах, как правило, не проявляются. Таким образом, пз всех рассмотренных видов поляризации стеклопластики на основе полиэфирных, эпоксидных, фенольно-формальдегидных и других смол следует отнести к материалам, которые обладают почти всеми видами поляризации одновременно, так как смолы обладают электронной и диполы-ю-релаксациоиной поляризациями одновременно, а стеклонаполнитель — ионно-релаксационной поляризацией. Основной предпосылкой для определения плотности полимерных материалов служит формула Клаузиуса—Моссоти, связывающая электрические свойства молекул, диэлектрическую проницаемость, поляризуемость и дипольный момент с плотностью и молекулярной массой  [c.98]

Наименьшую диэлектрическую проницаемость имеет вакуум (бц= 1), диэлектрическая проницаемость воздуха равна 1,00058 жидких и твердых диэлектриков — от 2 до 17, а сегнетоэлектри-ков — от 1500 до 7500. Величины диэлектрической проницаемости для различных материалов приведены в приложении.  [c.149]

Рассмотрим кратко причину появления этих разрядов. Проводимость газа в небольших полях обычно намного меньше, чем проводимость твердого диэлектрика-полимера (аг сгп). Поэтому на низких частотах и при постоянном напряжении напряженность электрического поля в газовом промежутке выше, чем в окружающем промежуток полимере. Кроме того, диэлектрическая проницаемость газа меньше, чем у полимера (ег<8п) поэтому и при повышенных частотах, когда напряженность поля распределяется обратно пропорционально величине в. получается, что газовый промежуток опять электрически нагружен больше, чем полимер. Учитывая то, что пробивная напряженность в газах гораздо меньше, чем в твердых диэлектриках, естественно ожидать, что по мере повышения электрического напряжения пробой в газовых порах будет возникать задолго до возможного пробоя полимера. Напряжение, при котором происходит это явление, называют напряжением возникновения дробных разрядов, или напряжением ионизации. Дробными эти разряды называют потому, что они не закорачивают полностью электроды и быстро погасают. Дело в том, что после пробоя газового включения в нем образуется плазма с высокой проницаемостью ( 8пл > 8п) и большой проводимостью (сгпл>сгп). Поэтому напряженность электрического поля немедленно перераспределяется так, что электрически нагруженным оказывается полимер, а напряжение в газовом промежутке (теперь уже плазменном) падает почти до нуля. Вследствие этого разряд прерывается, ио  [c.59]

С электронной поляризацией, обусловленной тепловым движением, связан довольно широкий круг процессов, происходящих в твердых диэлектриках фотодиэлектрический эффект в кристаллах люминесцирующих широкозонных полупроводников диэлектрическая релаксация, обусловленная наличием центров окрашивания в ионных кристаллах, диэлектрическая релаксация электронов, захваченны.х донорны.ми центрами в оксидных полупроводниках наконец, существенное повышение на низких частотах диэлектрической проницаемости в поликристаллических веществах типа рутила, перовскита или стронций-висмут титаната (СВТ). Последний из перечисленных диэлектриков находит важное техническое применение.  [c.72]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость твердых диэлектрико : [c.102]    [c.27]    [c.202]   
Химия и радиоматериалы (1970) -- [ c.74 ]



ПОИСК



Диэлектрик

Диэлектрическая (-йе)

Диэлектрическая проницаемост

Диэлектрическая проницаемость

Диэлектрическая проницаемость твердых диэлектриков

Диэлектрическая проницаемость твердых диэлектриков

Диэлектрические твердых диэлектриках

Лабораторная работа 2. Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков

Проницаемость

Твердые диэлектрики



© 2025 Mash-xxl.info Реклама на сайте