Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схема управляемого выпрямителя

Схема управляемого выпрямителя для непрерывного питания лампы накачки  [c.30]

При имеющей конечные значения, т. е. при работе выпрямителя на смешанную нагрузку, для вычисления / а используется предыдущее уравнение, справедливое для любой схемы выпрямления. Основные соотношения между параметрами в различных схемах управляемых выпрямителей приведены в табл, 17. Управляемый выпрямитель имеет внешнюю характеристику  [c.137]

Рис. 2-6. Принципиальная схема управляемого выпрямителя с приводом от синхронного двигателя. Рис. 2-6. Принципиальная схема управляемого выпрямителя с приводом от синхронного двигателя.

В схеме управляемого выпрямителя тиристоры УВ1 и УВЗ отпираются поочередно с тиристорами УВ2 и УВ4 подачей импульсов. на нх управляющие электроды.  [c.18]

Поскольку основным источником питания ЭП служит сеть переменного тока, то таким источником обычно является преобразователь, выполненный по схеме управляемого выпрямителя (УВ).  [c.181]

Ведомые сетью инверторы выполняют функцию преобразования энергии источника постоянного тока (напряжения), входящего в состав инвертора, в энергию сети переменного тока. Схемы ведомых (зависимых) тиристорных инверторов не отличаются от схем управляемых выпрямителей на тиристорах, различие заключается лишь в направлении преобразования энергии.  [c.228]

Для установок большой мощности — порядка нескольких сот и тысяч киловатт— применяются схемы, в которых якорь двигателя получает питание от отдельного генератора (система Г —Д), а обмотки возбуждения генератора и двигателя—от ртутных управляемых выпрямителей.  [c.520]

Схема регулятора состоит из двух основных узлов управляемого выпрямителя на тиристорах и управляющей схемы на транзисторах. Управляемый выпрямитель выполнен по однофазной мостовой схеме на двух тиристорах Т1 п Т2 типа ТЛ-100-6 и трех неуправляемых полупроводниковых вентилях Д1, Д2, ДЗ типа ВК2-100-6. При этом неуправляемый вентиль ДЗ используется в качестве обратного диода, шунтирующего обмотку возбуждения генератора повышенной частоты. Питание управляемого выпрямителя осуществляется непосредственно от сети переменного тока напряжением 220 Б.  [c.218]

Цепочки, состоящие из резисторов R1—R4 и конденсаторов С1—С4, предназначены для защиты тиристоров от коммутационных перенапряжений. Резисторы R5 и R6 используются для настройки величин токов управления тиристорами согласно их паспортным данным. Предельная мощность управляемого выпрямителя определяется типом и номинальными параметрами выбираемых тиристоров и неуправляемых вентилей. Параметры всех остальных элементов схемы для любых тиристоров остаются неизменными.  [c.218]

В последнее время все большее распространение получают сварочные выпрямители с тиристорным и транзисторным управлением. Силовая схема данного выпрямителя представляет собой неуправляемый сварочный трансформатор в сочетании с управляемым блоком выпрямления, собранным по мостовой схеме из управляемых диодов — тиристоров или транзисторов. Формирование ВВАХ источника питания осуществляется посредством фазового управления работой блока выпрямления тиристорного выпрямителя и частотно- или широтно-импульсного управления работой вышеназванного блока транзисторного выпрямителя. При этом для тиристорного выпрямителя возможно управление как во вторичной цепи сварочного трансформатора, так и в первичной.  [c.128]


Низкочастотные зарядные устройства могут быть построены на базе управляемых выпрямителей [54, 55]. р зменением угла регулирования вентилей управляемого выпрямителя можно поддерживать неизменный ток зарядки емкостного накопителя. В ряде случаев удается построить малогабаритные зарядные устройства. Однако подобные схемы не получили большого распространения. Это связано с наличием достаточно сложной системы управления, которая должна обеспечить строгую синхронизацию каждого импульса зарядного тока с частотой питающего напряжения. При каждом сбое импульса синхронизации в цепи повышающего трансформатора появляется постоянная составляющая тока, которая может привести к перегреву трансформатора и выходу его из строя. Не меньшую опасность для зарядного устройства представляют токи короткого замыкания, возникающие при переходе импульсных газоразрядных ламп в непрерывный режим.  [c.49]

Выпрямитель. В установках применяются полупроводниковые управляемые выпрямители. В установках, питающихся от сети 380 В, выпрямитель выполнен на диодах, а регулирование осуществляется с помощью тиристоров с низкой стороны силового (анодного) трансформатора. Принципиальная схема выпрямителя с симметричным входом приведена на рис. 59 [3 .  [c.83]

Управляемые выпрямители с тиристорными регуляторами выполняются по трехфазной мостовой или шестифазной однотактной параллельной вентильным схемам.  [c.163]

Если на выходе трансформатора применена мостовая схема выпрямления, как, например, в схеме автоматической катодной станции, разработанной Академией коммунального хозяйства, можно включить тиристоры в катодную группу моста, а неуправляемые диоды — в анодную группу (создается так называемая несимметричная мостовая схема). Применение подобной схемы уменьшает общее число тиристоров, включаемых в установку, а также необходимое число каналов управления (два вместо четырех). Схема несимметричного моста непригодна для управляемых выпрямителей большой мощности из-за ряда недостатков, но в схемах автоматических защитных противокоррозионных устройств, мощность которых, как правило, не превышает 3—Ъ ква, ее использование целесообразно.  [c.45]

Схема 13. Двухтактный ЭМВ, обмотка которого питается от сети переменного тока через управляемые выпрямители (тиристоры) Т1 и Тг. Преимуществом данного привода является легкость изменения амплитуды колебания рабочего органа и возможность создания схем автоматического управления вибратором.  [c.189]

Аппаратное и объединенное регулирование представлено схемами на рис. 20, б, в используется и сигнал состояния дизеля, передаваемый через индуктивный датчик ИД. Регулятором возбуждения генератора являются магнитный усилитель МУ (рис. 20, б), управляемый выпрямитель УВВ (см. гл. 6, 7 и 8). Здесь широко используются полупроводниковые аппараты  [c.18]

Рис. 20. Функциональные схемы регулирования генератора а — машинное регулирование б — аппаратное регулирование посредством магнитного усилителя в — аппаратное регулирование посредством управляемых выпрямителей / —генератор В — возбудитель СВ — синхронный возбудитель СПВ — синхронный подвозбудитель ИД — индуктивный датчик БЗВ — блок задания уровня возбуждения СУ — селективный узел УСС — узел суммирования сигналов ГЯГ — трансформатор постоянного тока — датчик сигнала по току нагрузки УВМ — узел выделения максимального сигнала по току нагрузки ТПН — трансформатор постоянного напряжения — датчик сигнала по напряжению генератора МУ — магнитный усилитель — амплистат возбуждения УВВ — управляемый выпрямитель возбуждения, БУВ — блок управления выпрямителями ВУ —узел выпрямления напряжения синхронного тягового генератора Рис. 20. <a href="/info/270330">Функциональные схемы регулирования</a> генератора а — <a href="/info/270293">машинное регулирование</a> б — аппаратное регулирование посредством <a href="/info/86630">магнитного усилителя</a> в — аппаратное регулирование посредством <a href="/info/270207">управляемых выпрямителей</a> / —генератор В — возбудитель СВ — <a href="/info/293248">синхронный возбудитель</a> СПВ — <a href="/info/293343">синхронный подвозбудитель</a> ИД — <a href="/info/21370">индуктивный датчик</a> БЗВ — блок задания уровня возбуждения СУ — <a href="/info/293388">селективный узел</a> УСС — узел суммирования сигналов ГЯГ — трансформатор <a href="/info/461800">постоянного тока</a> — <a href="/info/305493">датчик сигнала</a> по току нагрузки УВМ — узел выделения максимального сигнала по току нагрузки ТПН — <a href="/info/270347">трансформатор постоянного напряжения</a> — <a href="/info/305493">датчик сигнала</a> по <a href="/info/305417">напряжению генератора</a> МУ — <a href="/info/86630">магнитный усилитель</a> — амплистат возбуждения УВВ — <a href="/info/270207">управляемый выпрямитель</a> возбуждения, БУВ — <a href="/info/85578">блок управления</a> выпрямителями ВУ —узел выпрямления напряжения синхронного тягового генератора

Схема с магнитным усилителем может служить примером каскадной схемы — регулирование здесь перенесено с цепи возбуждения генератора Г на цепь возбуждения его возбудителя В, в связи с чем здесь имеется дополнительная электрическая машина малой мощности — синхронный подвозбудитель СПВ. Принципиально каскад может быть построен и в схеме с управляемыми выпрямителями возбуждения.  [c.19]

Принцип действия управляемого выпрямителя рассмотрим на примере выпрямителя однофазного тока с нулевым выводом. Вентили в простой схеме выпрямления (рис. 121) проводят ток поочередно каждый во время той части периода, когда напряжение на его аноде более положительно. Среднее значение выпрямленного напряжения зависит от его амплитудного значения.  [c.136]

Заменив в схеме вентили на тиристоры (рис. 122), получаем управляемый выпрямитель. Когда вступает в работу фазовое управление, включение каждого вентиля запаздывает, чем задерживается передача тока от предыдущего тиристора к следующему. Это заставляет ток течь в вентиле, который имеет меньшее положительное среднее напряжение за время интервала его проводимости. Задержка может быть достаточной, чтобы среднее за время интервала проводимости тиристора значение напряжения стало отрицательным. Задержка передачи тока от тиристора к тиристору может принимать любое значение в пределах от О до 180°. Пока задержка увеличивается от О до 90°, среднее значение выпрямленного напряжения уменьшается до О (рис. 122, в), при задержке 90—180° среднее значение напряжения делается отрицательным (рис. 122, г). Режим работы системы в этом случае называется инверторным, и для создания тока в схеме необходимо иметь в ней источник постоянного тока.  [c.136]

Способы регулирования напряжения в автономных инверторах. В отличие от управляемого выпрямителя или зависимого инвертора в автономном инверторе регулировать выходное напряжение изменением фазы отпирающих импульсов нельзя. Для этого требуется введение либо дополнительных регулирующих силовых звеньев, либо увеличение мощности и усложнение схемы самого инвертора. Известно несколько способов регулирования напряжения регулирование в цепи постоянного тока регулирование в цепи переменного тока на выходе инвертора широтно-импульсное регулирование с помощью вентилей инвертора регулирование параметров элементов собственно инвертора фазовое регулирование посредством сложения напряжений двух или нескольких блоков.  [c.143]

Перевод тяговой схемы из тягового режима в тормозной осуществляется тормозным переключателем ТП в обесточенном состоянии. Питание обмотки возбуждения тягового генератора, как и в тяговом режиме, происходит от возбудителя СВ через управляемый выпрямитель УВВ. Это дает возможность плавно регулировать возбуждение тяговых электродвигателей в требуемых пределах.  [c.204]

Действие остаточного напряжения генератора вызывает протекание размагничивающего тока через обмотку возбуждения по цепи тока 61 — резистор Ц1 — обмотка возбуждения — точка В результате остаточное напряжение генератора снижается до значения, обеспечивающего возможность регулирования напряжения при максимальной скорости входа в торможение. В процессе торможения ток в обмотке возбуждения генератора определяется разностью напряжений управляемого выпрямителя и генератора. Перевод схемы в тяговый режим сопровождается исключением напряжения генератора из его цепи возбуждения при помощи тормозного переключателя и реле Р. При этом точки (21—61 замыкаются, точки 61—вг размыкаются, отключая резистор / / от управляемого выпрямителя.  [c.205]

Дежурный ток основной дуги, ограничиваемый сопротивлением К2 до 30—70 А, обеспечивает первоначальное формирование дежурной дуги. Дальнейшее увеличение рабочего тока до установленного значения осуществляется путем плавного автоматического уменьшения угла открывания тиристоров. Благодаря наличию непрерывного дежурного тока при значительных пульсациях рабочего тока наблюдается устойчивое горение дуги в широком диапазоне регулирования при приемлемой индуктивности сглаживающего фильтра. Внешние характеристики источника питания (линии 1, 2, 3 на рис. 93, б) можно регулировать изменением коэффициентов обратных связей. Прямая 6 — внешняя характеристика источника без обратных связей. Область рабочих напряжений на дуге ограничена прямыми 4 и 5. Отсутствие балластных элементов в силовой схеме тиристорного выпрямителя позволяет экономично регулировать и стабилизировать ток в широких пределах изменения напряжения (практически от 0,1 до 0,9 / хх)- Указанным источникам питания, несмотря на устойчивое горение дуги, свойственны все остальные недостатки источника питания на управляемых вентилях.  [c.169]

В качестве управляемого выпрямителя в векторметре Ц-50 применяется эксцентрик с приводом от синхронного двигателя, замыкающий контакты выпрямителя. Принципиальная схема такого выпрямителя показана на рис. 2-6. Она отличается от схемы с обычным механическим управляемым выпрямителем (поляризованное реле) тем, что контакты 2 замыкаются с помощью эксцентрика /, укрепленного на оси синхронного двигателя СД, делающего один оборот за период. При вращении эксцентрик часть периода нажимает на подвижной контакт и замыкает цепь измерительного механизма ИМ.  [c.67]

Как видно из схемы, гальванометр измеряет среднее значение напряжения последнее связано с максимальной индукцией формулой (2-17а). Последовательно с гальванометром включены переменный резистор г для регулировки пределов измерений и механический управляемый выпрямитель МУВ. Управление осуществляется от фазовращателя, вращением ручки которого добиваются максимального (при данном значении [/ср) отклонения гальванометра.  [c.233]


Тиратроны применяются в схемах управляемых выпрямителей, релакса-1Щ0ННЫХ схемах и многих других устройствах автоматики. Основные данные-некоторых маломощных тиратронов нриведены в табл. 23. 6..  [c.702]

Тиристор — электропреобразовательный полупроводниковый прибор с тремя или более р—п переходами, в вольтамперной характеристике которого имеется участок отрицательного дифференциального сопротивления и который используется для переключения тиристоры получили широкое распространение в управляемых выпрямителям и в схемах регулируемого привода различают тиристоры диодные и триодные (3, 10].  [c.156]

На рис. 2.10 изображена упрощенная схема источника питания СН-4, предназначенного для питания газоразрядной лампы накачки ДКрТВ-3000 непрерывного излучателя ЛТ-2. В этой схеме управляемый трехфазный выпрямитель собран на диодах Д1 — ДЗ и тиристорах Д9 — ДИ. На входе выпрямителя установлены три однофазных трансформатора Тр1 — ТрЗ. Выпрямленное напряжение сглаживается дросселем Др, конденсаторной батареей С и электронным фильтром ЭФ. Схема зажигания СЗ выполнена двухступенчатой. Фазовое регулирование выпрямителя осуществляется системой управления СУ. Для синхронизации импульсов, включающих тиристоры при положительных полуволнах переменного напряжения, служат диоды Д4 — Д6. Система управления (на рисунке не показана) формирует импульсы частотой 150 Гц, определяющие срабатывание тиристора Д8 и включение одного из тиристоров Д9 — Д11, у которого напряжение анод — катод имеет прямую полярность. Импульсы управления могут сдвигаться относительно фазы сетевого напряжения в зависимости  [c.30]

Частоты повторения разрядных импульсов, соизмеримые с частотой питающей сети, можно получить в управляемых выпрямителях с нулевой фазой включения переменного напряжения [56-59]. Здесь зарядный процесс начинается в момент прихода на управляемый вентиль положительной полуволны и заканчивается при достижении амплитудного значения входного напряжения, т. е. примерно через четверть периода питающего напряжения. Если требуется регулировка напряжения, то возникает необходимость установки в зарядное устройство полностью управляемого коммутатора (например, тиристора с принудительным запиранием). Это большой недостаток подобных схем, который удается в ряде случаев компенсировать лишь возможностью получения ми-> ВДмальных габаритных размеров зарядного устройства при частоте повторения разрядных импульсов 100 Гц. Такая частота характерна (и в определенном смысле оптимальна) для твердотельных излучателей на гранате.  [c.49]

Схемы с нулевой фазой включения управляемого выпрямителя обеспечивают только дискретные и кратные частоте сети значения частоты повторения импульсов накачки. Расширение частотного диапазона зарядных устройств может быть достигнуто преобразованием источника переменного напряжения в источник выпрямленного (постоянного) напряжения с последующим то-коограничением [60, 61].  [c.50]

Схемы полупроводниковых выпрямителей могут быть классифицированы по выходной мощности — установки малой мощности (единицы киловатт), средней (десятки киловатт) и большой мощности по числу фаз источника питания — напрямители однофазного тока и трехфазного тока по возможностям регулировки — неуправляемые и управляемые. Выпрямители однофазного и трехфазного тока в зависимости от схемы включения вентилей и схе] ы соединения обмоток трансформатора в свою очередь подразделяют на схемы со средней точкой, мостовые и т. д. Иногда выпрямители классифицируют и по ряду других признаков характеру нагрузки (активная, активно-индуктивная, активно-емкостная, нагрузка с противоэдс), напряжению (низкого, среднего и высокого), частоте выпрямленного тока и т. д.  [c.23]

Питание якоря электродвигателя М1 привода осуществляется через управляемый выпрямитель, собранный по мостовой схеме с диодами ДЗ—Д6. Диоды Д1—Д4 образуют мостовой выпрямитель для питания обмотки возбуждения 0ВМ1 двигателя. Изменение величины выпрямленного напряжения на якоре двигателя, а следовательно, и регулирование скорости движения транспортера осуществляются плавным сдвиго.м фазы управляющего напряжения относительно напряжения сети.  [c.332]

Рис. 7. Принципиальная схема векторметра Фв — фазовраш.атель МУВ — механический управляемый выпрямитель Г — гальванометр Рис. 7. <a href="/info/228983">Принципиальная схема векторметра</a> Фв — фазовраш.атель МУВ — механический <a href="/info/270207">управляемый выпрямитель</a> Г — гальванометр
Общая функциональная схема автоматического регулирования управляемого выпрямителя в системе возбуждения тягового генератора тепловозов серии 2ТЭ116 приведена на рис. 123. Система является совокупностью отдельных элементов и устройств, направленно воздействующих друг на друга и выполняющих каждое в oтдeJ Iьнo ти определенную задачу.  [c.140]

При исключении балластного резистора из цепи возбуждения электродвигателей схема оборудуется устройством реализации жесткой обратной связи и размагничивания синхронного генератора. В этом случае непосредственно включается выпрямленное напряжение генератора ((Уду) в цепь его возбуждения (рис. 164). Схема применена на тепловозах 2ТЭ116 М и 2ТЭ121. При торможении цепь возбуждения генератора размыкается контактами тормозного переключателя П (точки 01,61), а контактами Т параллельно управляемому выпрямителю УВВ подключается резистор Н1, реле Р также получает питание. Замыкающие контакты реле Р подключают выпрямленное напряжение генератора к собственной обмотке возбуждения, следовательно, вводят выходное напряжение генератора в цепь его возбуждения.  [c.205]

Мостовые выпрямительные схемы однофазного тока могут быть и несимметричными. В таких схемах в два плеча включаются управляемые вентили, а в два других — обычные неуправляемые вентили. Несимметричный управляемый выпрямитель применен в качестве усилителя УВВ (рис. 8) в системе регулирования возбуждения синхронного генератора тепловоза ТЭ109.  [c.20]

Рис, 9.12. Принципиальные схемы а — блока управления возбуждением БУВ б — управляемого выпрямителя УВВ БП, БГ2 блокинг-генераторы МУ—магнитный усилитель (ФУ — фазосдвигающее устройство) ТI, Т2— тиристоры Ст1, Ст2— стабилитроны С — конденсатор Тр1, Тр2— трансформаторы ОбГ — обмотка возбуждения генератора ТЧ, Т 2— транзисторы ДЗ, Д4— диоды  [c.199]

Схема возбудителя включает в себя БУВ — блок управления возбуждением (тиристорами) УВВ — управляемый выпрямитель возбуждения (тиристорный мост), нагрузкой которого служит обмотка возбуждения тягового синхронного генератора ОВГ СВ — синхронный возбудитель и СУ — селективный узел, в котором формируется управляющий импульс у в зависимости от тока и напряжения тягового генератора, частоты вращения вала дизеля и сигнала от индуктивного датчика ИД. Блок управления в свою очередь состоит из СП — статического преобразователя МУ—магнитного усилителя с внутренней обратной связью, выполняющего роль фазосдвигающего устройства БП, БГ2 — двух блокинг-гене-  [c.204]


Рис. 160. Схема питания вспо-могательных нагрузок тепловозов от синхронного генератора собственных нужд в — веуправляемый выпрямительз УВВ — управляемый выпрямитель СГ — тяговый синхронный генератор ген — генератор собственных нужд ВУ — выпрямительная установка А — асинхронный электродвигатель Рис. 160. <a href="/info/436982">Схема питания</a> вспо-могательных нагрузок тепловозов от <a href="/info/214712">синхронного генератора</a> <a href="/info/113963">собственных нужд</a> в — веуправляемый выпрямительз УВВ — <a href="/info/270207">управляемый выпрямитель</a> СГ — <a href="/info/293268">тяговый синхронный генератор</a> ген — генератор <a href="/info/113963">собственных нужд</a> ВУ — <a href="/info/293257">выпрямительная установка</a> А — асинхронный электродвигатель
Выходной сигнал рассогласования по каждому каналу через усилитель УС и блок управления БУВ1 управляет тиристорным преобразователем возбуждения тягового генератора УВВ , уменьшая ток возбуждения СГ при увеличении сигнала обратной связи. Возбуждение генераторов тягового агрегата осуществляется от обмоток статора генератора собственных нужд через индивидуальные управляемые выпрямители (тиристорные преобразователи), выполненные по трехфазной несимметричной мостовой схеме с нулевыми диодами (рис. 162). Тиристорные преобразователи имеют независимую вентиляцию.  [c.267]

Жесткая обратная связь создается непосредственным подключением выпрямленного напряжения СГ в цепь его возбуждения (рис. 167,6) или через трансформаторный преобразователь. Сигналы обратной связи по скорости V, току обмотки якоря /я и возбуждению /в тяговых электродвигателей подаются в блок управления возбуждением БУВ. Выходным сигналом, сформированным в блоке, является угол регулирования а включения тиристоров управляемого выпрямителя УВВ. Напряжение возбуждения О вг синхронного генератора в узле УС сравнивается с сигналом, подаваемым жесткой обратной связью. Сигнал рассогласования поступает в обмотку возбуждения СГ. Схема ЭТ без балластного резистора применена, на тепловозах 2ТЭ121 и ТЭП70.  [c.278]


Смотреть страницы где упоминается термин Схема управляемого выпрямителя : [c.214]    [c.110]    [c.30]    [c.63]    [c.18]    [c.197]    [c.287]   
Тепловозы (1991) -- [ c.199 ]



ПОИСК



Выпрямители

Выпрямитель Схемы

Управляемые ТТ



© 2025 Mash-xxl.info Реклама на сайте