Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы углеродные — Способы их получения

По характеру свойств УУКМ относится к композитам с керамической матрицей, но отличается способом получения Армирующая часть углерод-углеродного композита находится в частично кристаллической форме графита, матричная часть обычно аморфна. В отличие от большинства композитов с керамической матрицей при высоких температурах этот материал подвержен окислению. Чтобы предохранить его от окисления, на поверхность обьино наносят тонкий слой керамики.  [c.162]

Углеродная матрица и способы ее получения. Углеродная матрица, подобная по физико-химическим свойствам углеродному волокну, обеспечивает термостойкость УУКМ и позволяет наиболее полно реализовать в композите уникальные свойства углеродного волокна. Углеродная матрица в композите выполняет следующие функции передает усилие на волокна защищает волокна от воздействия внешней среды изолирует отдельные волокна друг от друга, препятствует их взаимному сдвигу.  [c.71]


Метод получения углеродной матрицы определяет ее структуру и свойства, а также характеристики УУКМ. Наиболее широкое применение нашли два способа получения углеродной матрицы карбонизация полимерной матрицы заранее сформованной угле-  [c.71]

Армированные композиты с металлической матрицей часто разрабатываются следующим образом сначала изготовляется новый композит, а затем испытывается образец полученного материала. Однако такой способ бывает чреват разочарованием, поскольку получаемые свойства редко соответствуют предсказанным теоретически. Затем появляются трудности, связанные с необходимостью оптимизации большого числа параметров технологии изготовления композитов. Именно в связи с этим представляется важным описанный в данной главе способ оценки совместимости отдельных волокон и усов, так как в этом случае роль всех важных факторов для любой заданной системы композита можно оценить непосредственно. На примерах композитов с никелевой матрицей, упрочненных усами сапфира, нитрида кремния и углеродными волокнами, показано, что оптимизация температур и выдержек может быть достигнута при условии контроля за содержанием примесей. Эти принципы будут положены в основу оценки и выбора технологического процесса, который обеспечит получение композитов с оптимальной совместимостью упрочнителя и матрицы для каждой системы. Эта технология, возможно, будет сложнее (и дороже) тех, которые обычно применяются, но если бы удалось существенно понизить склонность упрочнителя к разрушению и дроблению, то это могло бы стать важным достижением. Сюда же относятся некоторые интересные возмол ности улучшения связи в композите путем стимулирования роста боко-  [c.427]

Процессы получения УУКМ с комбинированными матрицами. Одним из преимуществ УУКМ является возможность целенаправленного изменения их свойств путем варьирования условий получения. Поскольку углеродные матрицы, получаемые различными способами, описанными выше, различаются по структуре и термомеханическим свойствам, то для достижения необходимых свойств УУКМ эти способы часто комбинируются.  [c.76]

Химическое меднение. Химическое меднение является одним из немногих способов получения композиционных материалов на основе меди и его сплавов, армированных углеродным волокном. Введение углеродных волокон в медные сплавы целесообразно в некоторых случаях, когда требуется материал с высокими элек-тро- и теплопроводностью, близкими к соответствующим характеристикам меди, но более прочный, с более низким температурным коэффициентом линейного расширения. Кроме того, он может служить и хорошим материалом для высокопрочных, самосмазываю-щихся ПОДЦ1ИИНИКОВ трения. Часто химическое меднение исполь-зуют для улучшения смачиваемости углеродных волокон или нитевидных кристаллов в процессе изготовления композиционных материалов на основе алюминиевых сплавов методом пропитки жидким расплавом, либо в качестве подслоя на этих унрочните-лях, образующего плавящуюся эвтектику в контакте с металлом матрицы, используемым в виде тонких фольг при горячем прессовании.  [c.186]


Композиционные материалы классифицируются по матрице и пО способу получения материала. Различают композиционные материалы с металлическими, полимерными, углеродными п керамическими матрицами. Известны также композиции с несколькими матрицами. По способу упрочнения композиционные материалы разделяют на слоистые, волокнистые, дисперсноупрочняемые, эвтектические с направленной кристаллизацией.  [c.78]

В работе [143] применен способ акустической эмиссии для исследования накопления разрывов в материале на основе углеродных волокон. Полученные результаты показывают, что при каждом цикле нагружения наблюдается зависящий от времени релаксационный процесс, приводящий к постепенному нарастанию нaпpял eний в волокнах и к их статически распределенным разрывам, пока прочность материала не снизится до уровня максимального напряжения в цикле и не наступит разрушения материала. С другой стороны, в случае стеклянных волокон, обладающих значительно меньшей жесткостью, чем углеродные и борные волокна, при достаточно высоких рабочих напряжениях деформации волокон столь велики, что в эпоксидной или полиэфирной матрице индуцируются микротрещины или происходит ис-  [c.137]

В работе [38] исследовали различные технологические способы получения композиционных материалов с металлической матрицей, армированной углеродными волокнами, — горячее прессование волокон, предварительно покрытых матричным или вспомогательным металлом или сплавом, электроформование, горячую экструзию смеси волокон с порошком матричного сплава и жидкофазную пропитку. Хорошие результаты получены при электролитическом осаждении на углеродные волокна таких металлов, как медь, никель, свинец и олово отмечаются значительные трудности при нанесении"алюминиевого покрытия. В работе сделана попытка совместного осаждения алюминия и коротких углеродных волокон из эфирных растворов в инертной атмосфере. Углеродные волокна предварительно измельчались до длин порядка 1 мм (использовали волокна с предварительной поверхностной обработкой и без нее, а также с медным покрытием толщиной 2 мкм) и затем вводились в электролит. Главной трудностью при реализации процесса было комкование волокон, приводящее к закорачиванию электрической цепи. Избежать этого явления можно лишь при уменьшении концентрации волокон в электролите, в связи с чем оказалось невозможным получение образцов композиции с содержанием армирующих волокон более  [c.368]

Способ получения углеалюмипия пропиткой каркаса из армирующих волокон матричным расплавом позволяет использовать большую номенклатуру алюминиевых сплавов в качестве матричных. Как ун е отмечалось, эвтектический сплав А1—12% Si был выбран из-за своей низкой температуры плавления. Усовершенствование процесса изготовления углеродных волокон и их поверхностной обработки дает возможность применять сплавы с более высокой температурой плавления без заметного ухудшения механических характеристик углеродных волокон. В связи с этим последующие исследования были направлены на изучение влияния состава матрицы на свойства углеалюминия, в то же время был организован промышленный выпуск более качественных волокон Торнел-75 и эти волокна стали использоваться в качестве упроч-нителя. Исследовали матрицы следующего состава технический алюминий, сплав с 7% Mg, сплав с 7% Zn и сплав с 13% Si.  [c.382]

В 1971 г. Сара запатентовал способ получения композиционного материала с матрицей из медноникелевого сплава, армированной высокопрочными углеродными волокнами. Способ заключается в последовательном электролитическом нанесении на углеродные волокна никелевого и медного покрытия и дальнейшем прессовании их при 900° С. Механические характеристики полученного композиционного материала были невысоки Сти=380 МН/м (38,8 кгс/мм ) ж Е — 180 ГН/м (18 400 кгс/мм ), что, по-видимому, обусловлено расслоением и пористостью композиции, а также неравномерным распределением армируюш их волокон в материале вследствие неоднородности исходных металлических покрытий по толш ине.  [c.401]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]


Для композищюнных материалов с пироуглеродной матрицей (два последних типа) по представленным в табл. 6.6 данным трудно установи ь влияние структуры на их упругие свойства. Более четкое представление о зависимости упругих характеристик углерод-углеродных композиционных материалов от структуры армирования и свойств исходных компонентов можно получить сопоставлением расчетных и экспериментальных значений (табл. 6.8). Расчетные значения вычисляли по зависимостям, полученным для аналогичных структур в гл. 5. При расчете модуль упругости углеродной матрицы принят равным 6110 МПа (усредненные данные эксперимента), волокон — 2,2-10 МПа. Объемное содержание арматуры н материалах устанавливали двумя способами по плотностям исходного каркаса и волокон [см. (1.2)], а также по содержанию волокон в материалах  [c.176]

Метод намотки волокном считается в настоящее время универсальным способом переработки армированных пластмасс. Он применяется в основном для промышленного производства резервуаров и труб для хранения и транспортировки различных хими-калиев и технических веществ. Полиэфирные смолы и стекловолокно главные составные части армированных материалов, они и будут, по-видимому, оставаться таковыми в обозримом будущем. Отмечается растущее применение углеродного и ара-мидного волокон, особенно для получения сосудов высокого давления, работающих в весьма ответственных условиях эксплуатации. В качестве матрицы (связующего) в этих случаях наиболее пригодна эпоксидная смола. Можно ожидать новых усовершенствований метода намотки на месте применения и комбинированной намотки, например стекловолокна на поливинилхлоридную трубу. Другая изучаемая возможность — это прямое прессование намотанного слоями волокна. Эти методы формования могут обеспечить уникальные возможности получения конструкционных изделий, масса которых является определяющим фактором.  [c.237]

Для получения плотных алюминиевых покрытий на углеродных волокнах был с успехом опробован метод вакуумного напыления, однако при этом способе металлизации существует значительный экранный эффект, и для получения равномерных покрытий по всему сечению жгута необходимо перед напылением укладывать жгут в тонкую ленту. Из покрытых алюминием углеродных волокон методом горячего прессования получили компактные образцы композиционного материала. Распределение волокон в материале в целом оказалось достаточно равномерным, однако механические характеристики материала были невысокими, очевидно из-за недостаточной прочности связи матрицы и волокна (наблюдалось отслаивание алюминия от волокон). Более успешные эксперименты проведены по алюминированию волокон методом химического осаждения при термическом разложении триизобутила алюминия экранный эффект в этом случае не проявляется и покрытия получаются однородными по всему сечению углеродного жгута. Были сделаны также попытки изготовления углеалюминиевого материала из покрытых таким образом волокон методами горячего и холодного прессования, но из-за малого количества полученного материала его свойства не определялись.  [c.369]

Первый способ состоит из пропитки графитовых волокон смолой или пеками, намотки заготовки, ее отверждения и механической обработки на заданный размер, карбонизации при 800 - 1500С в неокислительной (например, инертном газе) или нейтральной среде, уплотнении пиролитическим углеродом, графитизации при 2500-3000 °С и нанесении противооки-слительных покрытий из карбидов кремния и циркония. Для получения материала высокой плотности цикл пропитка — отверждение — карбонизация многократно повторяют. Всего процесс продолжается около 75 ч. В зависимости от режимов проведения плотность КМ, полученного этим методом, составляет 1,3-2 т/м . Свойства полученного при этом углерод-углеродного КМ зависят от многих факторов вида исходного волокна и связующего, условий пропитки, степени наполнения матрицы, свойств кокса и прочности его связи с волокном, режимов отверждения, карбонизации, графитизации, многократности цикла пропитка — отверждение — карбонизация. Так, при пропитке феноло-формальдегидной смолой плотность КМ не превышает 1,65 т/м , при пропитке фурановыми смолами она доходит до 1,85 т/м , а при использовании пеков составляет 2,1 т/м . Нагрев карбонизированного материала до 2500-3000 °С вызывает его гра-фитизацию.  [c.463]


Смотреть страницы где упоминается термин Матрицы углеродные — Способы их получения : [c.85]   
Композиционные материалы (1990) -- [ c.71 ]



ПОИСК



16 — Способы получения



© 2025 Mash-xxl.info Реклама на сайте