Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электропроводность электронно-примесной системы

Б. Электропроводность электронно-примесной системы  [c.329]

Возникновение электронной или дырочной электропроводности при введении в идеальный кристалл различных примесей обусловлено следующим. Рассмотрим кристалл 81, в котором один из атомов замещен атомом 8Ь. На внешней электронной оболочке 8Ь располагает пятью электронами (V группа периодической системы). При этом четыре электрона образуют парные электронные связи с четырьмя ближайшими атомами 81. Свободный пятый электрон продолжает двигаться вокруг атома 8Ь по орбите, подобной орбите электрона в атоме На однако сила его электрического притяжения к ядру уменьшится соответственно величине диэлектрической проницаемости 81. Поэтому для освобождения пятого электрона требуется незначительная энергия (приблизительно 0,008 адж). Такой слабо связанный электрон легко отрывается от атома 8Ь под действием тепловых колебаний решетки при низких температурах. Низкая энергия ионизации примесного атома означает, что при температурах около—100° С все атомы примесей в Се и 81 уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. При этом основными носителями заряда являются электроны и возникает электронная (отрицательная) электропроводность, или электропроводность п -типа.  [c.388]


Из формулы (3.42) следует, что с ростом уровень Ферми перемещается вверх (по шкале энергии) примерно с середины запрещенной зоны до расстояния порядка коТ ниже дна зоны проводим ости (при Ий Нс). Если N >N0, то система электронов в зоне проводимости становится вырожденной и поведение примесного полупроводника напоминает уже поведение металла (например, уменьшение электропроводности с ростом температуры).  [c.117]

При введении в кремний атома элемента V группы Периодической системы элементов Д. И. Менделеева (например, мышьяка As) четыре из пяти его валентных электронов вступают в связь с четырьмя валентными электронами соседних атомов кремния и образуют устойчивую оболочку из восьми электронов. Девятый электрон оказывается слабо связанным с ядром пятивалентного элемента, он легко отрывается и превращается в свободный электрон (рис. 3.5, в), дырки при этом не образуется. На энергетической диаграмме этот процесс соответствует переходу электрона с уровня доноров (f jj в свободную зону (рис. 3.5, г). Примесный атом превращается в неподвижный ион с единичным положительным зарядом. Примесь этого типа называется донорной, а полупроводники, в которые введены атомы доноров, - электронными или п-типа электропроводности. В таких полупроводниках свободных электронов больше, чем дырок, и они обладают преимущественно электронной электропроводностью.  [c.51]

Если в кремний введен атом трехвалентного элемента Ш группы Периодической системы элементов Д. И. Менделеева (например, бора В), то все три его валентных электрона вступают в связь с четырьмя электронами соседних ато-.мов кремния. Для образования устойчивой оболочки из восьми электронов не хватает одного. Им является один из валентных электронов, отбираемый от ближайшего соседнего атома, у которого в результате образуется незаполненная связь - дырка (рис. 3.5, д). На энергетической диаграмме этот процесс соответствует переходу электрона из валентной зоны на уровень акцепторов Wa и образованию в валентной зоне дырки (рис. 3.5, е). Примесный атом превращается в неподвижный ион с единичным отрицательным зарядом, свободного электрона при этом не образуется. Примесь такого типа называется акцепторной, а полупроводники, в которые введены атомы акцепторов, - дырочными или р-типа электропроводности. Дырок в них больше, чем свободных электронов. Поэтому эти полупроводники обладают преимущественно дырочной электропроводностью.  [c.51]


Важным приложением кинетического уравнения (4.2.99) является задача об электропроводности. Здесь мы дадим вывод формулы для коэффициента электропроводности системы электронов, взаимодействующих с хаотически расположенными примесными центрами.  [c.329]

Прежде чем приступить непосредственно к вычислению проводимости, сделаем одно замечание. Мы отмечали а параграфе 5.1. первого тома (см. также приложение 5Б), что в теории электропроводности могут встретиться два предельных случая. В адиабатическом пределе средний импульс носителей заряда релаксирует значительно быстрее, чем устанавливается равновесное распределение частиц по энергиям или, как говорят, происходит термализация в системе. Такая ситуация возникает, например, в полупроводниках, когда концентрация электронов проводимости и дырок мала, а средний импульс носителей заряда быстро релаксирует из-за их упругого рассеяния на примесных атомах. Как мы видели в приложении 5Б, в адиабатическом пределе необходимо рассматривать процесс релаксации всех моментов одночастичной функции распределения, поскольку упругие процессы рассеяния сами по себе не приводят к установлению равновесного распределения частиц по энергиям. Относительно проще обстоит дело в изотермическом пределе, когда характерное время термализации носителей заряда значительно меньше времени релаксации их полного импульса. В этом пределе достаточно рассматривать лишь процесс релаксации первого момента одночастичной функции распределения, т. е. среднего импульса. В плазме ситуация близка к изотермической, поскольку сильное кулоновское взаимодействие между электронами быстро приводит к термализации электронной подсистемы. Важно подчеркнуть, что само по себе это взаимодействие не меняет полный импульс электронов, который релаксирует только за счет взаимодействия между электронами и ионами. Из-за эффектов экранирования в плазме электрон-ионное взаимодействие является относительно слабым и может быть учтено а рамках теории возмущений.  [c.38]

Структуры типа алмаза. Тип электропроводности определяется размерами и электроотрицательностью примесных атомов, внедряющихся в междуузлия решеток полупроводников IV группы периодической системы. Эксперимент показывает, что в противоречии с указанным выше правилом валентности литий (I группа), внедряясь в междуузлия решетки германия, будет донором, а кислород (VI группа) — акцептором. Внедрение большого по размерам атома лития в тесные междуузлия решетки германия оказывается возможным только после его ионизации вследствие слабой связи валентного электрона, легко отрывающегося от своего атома в среде с большой диэлектрической проницаемостью (е германия см. в табл. 8-4). Образовавшийся ион лития маленьких размеров может уже внедряться в тесные междуузлия решетки, а освободившийся электрон обусловливает электропроводность л-типа. Внедрение в междуузлия атомов кислорода, имеющих сравнительно небольшие размеры и большую электроотрицательность, приводит к захватам электронов из атомов полупроводника, вследствие чего возникает электропроводность р-тина.  [c.329]

Экситоны. Как уже указывалось, при возбуждении собственной фотопроводимости электроны из валентной зоны перебрасываются в зону проводимости и становятся свободными. Однако возможно и иное течение процесса, когда возбужденный электрон не разрывает связи с дыркой, возникающей в валентной зоне, а образует с ней единую связанную систему. Такая система была впервые рассмотрена Я. И. Френкелем и названа им экситоном. Экситон сходен с атомом водорода в обоих случаях около единичного положительного заряда движется электрон и энергетический спектр является дискретным (рис. 12.9). Уровни энергии экситоиа располагаются у дна зоны проводимости. Так как экситоны являются электрически нейтральными системами, то возникновение их в полупроводнике не приводит к появлению дополнительных носителей заряда, вследствие чего поглощение света не сопровождается увеличением проводимости полупроводника. При столкновении же с фоноиами, примесными атомами и другими дефектами решетки экситоны или рекомби-иируют, или разрываются . В первом случае возбужденные атомы переходят в нормальное состояние, а энергия возбуждения передается решетке или излучается в виде квантов света во втором случае образуется пара носителей — электрон и дырка, которые обусловливают повышение электропроводности полупроводника,  [c.327]


Донорно-акцепторная связь наблюдается между элементами различных групп периодической системы. Она характеризуется тем, что атомы примесей некоторых элементов отдают по одному электрону в кристаллическую решетку основного элемента. Такие атомы называются донорными. Примесные атомы, которые захватьшают по одному электрону из основного элемента, называются акцепторными. Первые поставляют электроны в зону свободных уровней энергии, вторые создают свободные уровни. Первые создают в веществе электронную электропроводность типа л (negative—отрицательная), вторые — дырочную электропроводность типа р (positive — положительная).  [c.33]

Появление электронной или дырочной проводимости при введении в идеальный кристалл различных примесей происходит следующим образом. Предположим, что в кристалле кремния один из атомов замещен атомом сурьмы. Сурьма на внешней электронной оболочке имеет пять электронов (V группа периодической системы). Четыре электрона образуют парные электронные связи с четырьмя ближайшими соседними атомами кремния. Оставшийся пятый электрон будет двигаться около атома сурьмы по орбите, подобной орбите электрона в атоме водорода, но сила его электрического притяжения к ядру уменьшится соответственно диэлектрической проницаемости кремния. Поэтому, чтобы освободить пятый электрон, нужна незначительная энергия, равная примерно 0,05 эв ( =0,008 адж). Слабо связанный электрон легко может быть оторван от атома сурьмы под действием тепловых колебаний решетки при низких температурах. Такая низкая энергия ионизации примесного атома означает, что при температурах около —100° С, все атомы примесей в германии и кремнии уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. В этом случае основными носителями заряда будут электроны, т. е. здесь имеет место электронная проводимость или проводимость п-типа п — первая буква слова negative).  [c.149]

Структура реальных кристаллов. Вследствие нарушения равновесных условий роста и захвата примесей при кристаллизации, а также под влиянием различного рода внеш. воздействий идеальная структура К. всегда имеет те или иные нарушения. К ним относят точечные дефекты — вакансии, замещения атомов осн. решётки атомами примесей, внедрение в решётку инородных атомов, дислокации и др. (см. Дефекты в кристаллах). Дозируемое введение небольшого числа атомов примеси, замещающих атомы осн. решётки, широко используется в технике для изменения св-в К., напр, введение в кристаллы Ge и Si атомов III и V групп периодич. системы элементов позволяет получать крист, полупроводники с дырочной и электронной электропроводностями. Другие примеры примесных кристаллов — рубин, состоящий из AI2O3 и примеси (0,05%) Сг иттриево-алюминиевый гранат, состоящий из Y3AI5O2 и примеси (до 1%) Nd.  [c.329]

Для кремния донорными примесями обычно служат элементы V группы периодической системы — фосфор (Р) или сурьма (Sb). Атом донорной примеси образует ковалентную связь с четырьмя соседними атомами кремния посредством четырех валентных электронов пятый л<е валентный электрон становится свободным носителем заряда. Количество свободных электронов оказывается равным сумме атомов донорной примеси и собственных электронов. Так как электропроводность в рассмотренном случае будет в основном определяться электронами, то их называют основными носителями заряда в противовес дыркам, называемым в этом случае неосновными носителями. Такой примесный кремний называют электронным или кремнием /г-типа (от латинского negative — отрицательный) говорят также, что такой кремний обладает электронным видом электропроводности. Акцепторными примесями обычно служат элементы III группы периодической системы — алюминий (А1), бор (В), галий (Ga). Атому акцепторной примеси для образования ковалентной связи с четырьмя соседними атомами кремния в дополнение к трем валентным электронам необходим четвертый. Этот электрон отбирается у одного из соседних атомов — возникает ион кремния, т. е. образуется дырка. В этом случае дырки как примесные , так и собственные называют основными носителями, а электроны — неосновными. Такой примесный кремний называют дырочным или /7-типа (от латинского positive—положительный) говорят также, что такой кремний обладает дырочной проводимостью.  [c.46]


Смотреть страницы где упоминается термин Электропроводность электронно-примесной системы : [c.389]    [c.150]   
Смотреть главы в:

Статистическая механика неравновесных процессов Т.1  -> Электропроводность электронно-примесной системы



ПОИСК



Электронные системы

Электропроводность

Электропроводность примесная

Электропроводность электронная



© 2025 Mash-xxl.info Реклама на сайте