Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические волокна одномодовые

Авторы [281 получили почти 5-кратное сжатие в одномодовом оптическом волокне ЧМ импульса, генерируемого лазерным диодом с распределенной обратной связью при модуляции тока накачки. Импульс с начальной длительностью 1,7 не на длине волны 1.54 мкм сжимался  [c.40]

Выражения (8.9.15) и (8.9.16) позволяют нам описывать одномодовые оптические волокна с помощью первых трех моментов fio, 2 и 4 профиля показателя преломления. Поскольку моменты являются усредненными по профилю величинами, данный метод автоматически приводит к сглаживанию несущественной тонкой структуры показателя преломления п(р).  [c.599]


Фазовая самомодуляция, возникающая при распространении лазерных импульсов по оптическому волокну, приобрела большое значение для оптической компрессии, т.е. сжатия во времени, коротких лазерных импульсов. Принцип действия такого компрессора, состоящего из одномодового оптического волокна и пары дифракционных решеток, обсуждался в 1.5.  [c.192]

Примечание. Для системы с 5=280 Мбит/с на одномодовом оптическом волокне диапазона 1,55 мкм.  [c.205]

Заметим, что величина критической частоты (7.22) зависит как от радиуса цилиндра, так и от разности — ё2- Если радиус и разность — Бз достаточно малы, то критическая частота основной волны может быть очень высокой. Именно поэтому в оптических волокнах диэлектрическая нить покрывается диэлектрической оболочкой. Если выбрать отношение е /ег как можно ближе к единице, то даже при относительно большом радиусе внутреннего цилиндра (в несколько микрон) критическая частота будет столь велика, что по волноводу будет распространяться лишь одна нормальная волна (одномодовый режим).  [c.342]

ОДНОМОДОВЫЕ ОПТИЧЕСКИЕ ВОЛОКНА  [c.141]

Одномодовое оптическое волокно  [c.1461]

Принцип работы одномодового волокна ненамного сложнее обьганого распространения луча вдоль ядра. Использование геометрической оптики для описания работы данного вида волокна не совсем корректно, так как в данном подходе не учитывается распределение электромагнитной энергии внутри волокна. Некоторая часть электромагнитного излучения переносится в оптической оболочке, как показано на рис. 5.6. Кроме того, диаметр светового пучка, вводимого в волокно, превышает диаметр его ядра. Для определения поперечного размера светового пятна в волокне используется термин — диаметр модового поля. В отличие от многомодового, в одномодовом волокне излучение присутствует не только внутри ядра. Поэтому диаметр модового поля лучше характеризует излучение, чем диаметр ядра.  [c.56]

Отметим, что такого рода классификация ни в коей мере не исключает более детальной классификации и не претендует на исчерпывающее изложение предмета. Волоконно-оптический кабель должен соответствовать конкретным требованиям. При передаче только нескольких тысяч битов в секунду на несколько метров достаточно использовать пластиковый кабель. Пластиковое волокно дешевле, так же как и совместимые с ним компоненты источники, детекторы и соединители. Использование одномодового волокна для таких задач походило бы на использование "Феррари" для поездки в соседний магазин. Выбор волокон с заведомо худшими характеристиками определяется конкретной задачей. Каждое волокно хорошо по-своему.  [c.60]


Затуханием называется потеря оптической энергии по мере движения света по волокну. Измеряемое в децибелах на километр, оно изменяется от 300 дБ/км для пластикового волокна до примерно 0.21 дБ/км для одномодового волокна.  [c.67]

Ключевым моментом волоконно-оптического соединения является точное размещение волоконных ядер (или несущих свет областей в одномодовом волокне) для обеспечения максимально полной передачи света от одного  [c.149]

Вопрос о величине оптической мощности, которая может быть эффективно введена в волокно от протяженного источника, рассматривается в гл. 4. Определяемое формулой (2.1.20) произведение полосы пропускания на расстояние на практике оказывается существенно ниже реального. Из-за рассеяния в волокне большинство наклонных лучей испытывают большое затухание и при прохождении большого расстояния имеет место усреднение наклона траекторий, более близких к оси лучей. Происходящие при этом эффекты будут предметом рассмотрения в 6.6, а здесь отметим, что они приводят к уменьшению дисперсии и в результате в волокнах большой длины она увеличивается пропорционально корню квадратному из длины. Тем не менее дисперсия накладывает строгие ограничения на использование ступенчатых волокон, допуская их применение лишь в сравнительно коротких линиях связи со сравнительно неширокой полосой пропускания. Пример, приведенный в конце гл. 1, подтверждает это. Существует два типа волокон, в которых преодолен этот недостаток (рис. 2.5). Первое из них, так называемое градиентное волокно (рис. 2.5,г), было очень распространено на ранней стадии развития волоконной оптики, и оно будет рассмотрено чуть позже. Изображенное на рис. 2.5, д одномодовое волокно, вероятно, станет основным типом в будущем. Оно будет описано в 2.3 и гл. 5, где также отмечены и возможные преимущества волокна с У-профилем, изображенного на рис. 2.5, е.  [c.39]

Волоконно-оптические системы связи второго поколения делятся на две категории системы, использующие многомодовое волокно и работающие в области 1,3 мкм, соответствующей минимальной материальной дисперсии и, системы, в которых применяется одномодовое волокно на одной из длин волн, обеспечивающих минимальное затухание. Преимущество этих систем перед системами связи первого поколения состоит в возможности существенного увеличения расстояния между ретрансляторами, что и стимулирует разработку длинноволновых ис-  [c.444]

Особый интерес представляют три волоконно-оптические системы связи второго поколения, работающие на более длинных волнах. Первая — это волоконно-оптическая система связи, работающая на длине волны 1,3 мкм, соответствующей минимальной материальной дисперсии и использующая СД, /7-/-п-фотодиод в сочетании с полевым транзистором и многомодовое градиентное волокно. Расстояния между ретрансляторами будет превышать 10 км при информационной пропускной способности 140 Мбит/с и 20 км при 45 Мбит/с. Вторая система использует лазер, ЛФД или -(- -фотодиод в сочетании с полевым транзистором и одномодовое волокно и работает на длине волны 1,55 мкм, соответствующей минимальному затуханию. Ее параметры зависят от минимизации ширины спектра излучения лазерного источника за счет  [c.468]

Волокно является двухслойным диэлектрическим волноводом, характеризующимся вполне определенными пространственно-временными распределениями электромагнитного поля, которые зависят от параметров волокна и длины волны оптического излучения и называются модами. Каждая мода удовлетворяет уравнениям Максвелла и некоторь1м граничным условиям, определяемым геометриёй и оптическими характеристиками волокна. Различают одномодовые и многомодовые оптические волокна. Диапазон длин волн сигналов, передаваемых по ОК находится в спектральном диапазоне от 850 до 1550 нм, который относится к ближайшему ИК-диапазону,  [c.206]

Пример условного обозначения марки кабеля ОКСН-40Т-72 оптический кабель самонесущий неметаллический (ОКСН) с максимально допустимой растягивающей нагрузкой 40 кН (40), с внешней оболочкой из трекингостойкого полиэтилена (Т) или полиэтилена (П), имеющий семьдесят два (72) одномодовых оптических волокна.  [c.214]


Рассмотрим сначала процессы, которые имеют место при распространении импульса в оптическом волокне. Прежде всего заметим, что при данном диаметре небольшого ядра одномодового волокна ( 4 мкм) импульс создает внутри ядра очень высокую интенсивность излучения. В этих условиях поле световой волны вызывает значительные изменения показателя преломления Ьп материала волокна. В действительности это изменение 6п пропорционально квадрату амплитуды поля импульса, так что мы можем записать Ьп = П2еА , где для кварца П2е X 10 mYB . Это явление обычно называют оптическим эффектом Керра. Поскольку интенсивность I пропорциональна А , величину 6п можно записать в более общепринятом виде  [c.518]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

Во многих экспериментальных ситуациях, как, например, при распространении импульса по оптическому волокну, необходимо одновременно учитывать дисперсию групповой скорости и нелинейность показателя преломления (см. [8.37]). Хотя в оптических волокнах фронт волны не является плоским, все же в одномодовых, волокнах можно для описания распространения импульса воспользоваться следующим уравнением  [c.308]

В работе [64] рассмотрено построение двухканальной волоконно-оптической системы связи, основанной на передаче по одномодовому волокну двух независимых каналов с длинами волн 1,3 и 1,55 мкм. Для селекции каналов на выходе волокна использовалась голографическая дифракционная решетка. Для этих же целей помимо дифракционных реихеток могут применяться спектральные дифракционные элементы, согласованные с несколькими длинами волн [66, 67]. В работе [65] предложена система прямой передачи изображений по оптическому волокну с использованием разложения белого света по спектральным компонентам. Селекция компонент в [65 осуществляется с помощью сегментированного голографического оптического элемента, каждый сегмент которого согласован с определенным диапазоном спектра.  [c.456]

Аксиально-симметричные оптические волокна, работающие в одномодовом режиме, на самом деле являются двумодовыми световода ш, поскольку в них могут распространяться две ортогонально-поляризо-ванные собственные моды [например, моды (ЬР ) 1 и (ЬРД в волокне со ступенчатым профилем показателя преломления]. Если оптическое волокно обладает идеальной структурой, то очевидно, что два поляризащюнных состояния вырождаются, т. е. соответствующие им постоянные распространения и /3 совпадают (главные оси J и волокна выбираются произвольным образом). В реальных условиях значения 0 и /Зу очень близки друг к другу, что может вызвать сильное взаимодействие двух ортогонально-поляризованных мод. В свою очередь это взаимодействие приведет к перекачке мощности (которая сопровождается процессом поляризационной конкуренции мод) на очень коротких расстояниях (от нескольких сантиметров до нескольких метров).  [c.619]

Необходимо упомянуть и о важном значении солитонов в решении такой проблемы, как увеличение скорости передачи информации по одномодовым оптическим волокнам. Интересующиеся читатели мо-  [c.629]

Модифицированный метод химического осаждения из газовой фазы (M VD) позволяет получать оптические волокна с самыми низкими потерями и самым тщательным контролем профиля показателя преломления. Так, изготовленные этим методом градиентные волокна имеют минимальные потери 0,34 дБ/км на длине волны 1,55 мкм при полосе пропускания более 1 ГГц-км, а минимальные потери одномодовых волокон составляют 0,2 дБ/км на длине волны 1,55 мкм.  [c.118]

Каждая мода имеет минимальную частоту отсечки, ниже которой она не может распространяться. При V < 2,4048 будет распространяться только одна мода HEi, или LPq,. Оптические волокна, удовлетворяющие этому условию, называются одномодовыми или мономодовыми. Они требуют для своего возбуждения лазерного источника излучения, но зато не обладают никакой межмодовой дисперсией. Частота отсечки одномодовых волокон увеличивается вследствие отклонения профиля показателя преломления от идеальной ступеньки .  [c.149]

Одиомодовый оптический волновод, одномодовое оптическое волокно  [c.1452]

В разд. 8.6 мы показали, каким образом волокно со ступенчатым профилем показателя преломления может работать в одномодовом режиме, т. е. направлять только две вырожденные ортогонально-поляризованные волны, соответствующие моде (LP) )j при условии, что нормированная частота V удовлетворяет неравенству (8.6.13). В области длин волн 1,2—1,6 мкм, в которой кварцевые волокна характеризуются малыми потерями и слабой хроматической дисперсией (см. разд. 8.13 и 8.14), одномодовые волокна имеют большие потенциальные возможности для ультраширокополосной оптической связи, что побуждает заняться детальным изучением их характеристик распространения. Однако это изучение не может ограничиваться рассмотрением волокон со ступенчатым профилем показателя преломления, для  [c.596]


При (1 < X по волокну может распространяться только одна мода (один тип колебаний). Такие волокна принято называть одномодовыми. Они находят применение главным образом в волоконно-оптических линиях связи (ВОЛС). В этих световодах резко уменьшаются  [c.495]

В качестве конкретного примера рассмотрим моды в скрученном световоде. Благодаря тому что освоена технология изготовления волокон, сохраняющих поляризацию излучения на длинах в сотни метров и более, а также в связи с перспективой применения таких волокон в технике оптической связи и т. п. заметно активизировались исследования поляризационных свойств одномодовых волоконных световодов (см., например, [23]). В регулярном двулучепреломляющем одномодовом световоде, который аналогичен анизотропной среде, распространяются две основные моды с разными фазовыми скоростями, поляризованные практически линейно и ортогонально друг к другу (так называемые ХР-моды) [19]. Вырождение мод в реальном волокне с круглым сечением снимается из-за изгибов, неизбежной эллиптичности сечения сердцевины и т. п. Уравнения распространения связанных ХР-мод в слабонаправляющем и слабоанизотропном световоде, приведенные в [19], имеют следующий вид  [c.269]

Одномодовое волокно позволяет легко достичь птриньт полосы пропускания от 50 до 100 ГТц-км. В настояш ее время волокна имеют полосы пропускания в несколько гигагерц и позволяют передавать сигнал на десятки километров. До 1985 года наиболее крупными были коммерческие волоконно-оптические системы системы передачи цифровой телефонии, имевшие скорость передачи информации 417 Мб/сек. Эта системы позволяли обслуживать одновременно 6048 телефонных переговоров и работали на одномодовом волокне, позволявшем передавать сигнал на 35 километров без повторителя. К концу 1992 года возможности телефонных линий выросли до 10 Гб/сек и 130 ООО звуковых каналов.  [c.55]

Особенность распространения излучения в одномодовом режиме подчеркивает еще одно отличие одномодового волокна от многомодового. В одномодовом волокне излучение переносится не только внутри ядра, но и в оптической оболочке, в связи с этим возникает дополнительное требование к эффективности переноса энергии в этом слое. В многомодовом волокне прозрачность оптической оболочки практически не имеет никакого значения. Действительно, в этом случае возникновение мод в оптической оболочке является даже нежелательным, поэтому требования к ее прозрачности достаточно умерены. Для одномодового волокна это )ггверждение будет неверно.  [c.57]

Волноводная дисперсия, (наиболее важный вид дисперсии в одномодовых ю-локнах) обусловлена тем, что оптическая энергия движется как по ядру, так и по оптической оболочке, имеюш им различные показатели преломления. Излучение движется со слегка различаюш имися скоростями в ядре и оптической оболочке, что связано с разными показателями преломления. Изменение внутренней структуры волокна позволяет существенно влиять на волноводную дисперсию, тем самым изменяя специфицированную общую дисперсию волокна. Это является одним из перспективных направлений разработки одномодовых систем, которые будут рассмотрены в последней главе.  [c.66]

На рис. 8.9 видно, что спектральная ширина лазера существенно уже по сравнению со спектральной шириной светоизлучающего диода. Спектральная ширина лазера составляет от 2 до 5 нм, в то время как аналогичная характеристика СИД составляет десятки нанометров. Как правило, спектральная ширина не сказывается на качестве линии длиной в несколько километров, работающей на частотах до 100 МГц. Спектральная ширина является критическим параметром для высокоскоростных протяженных одномодовых оптических систем. В этом случае спектральная ширина ограничивает скорость передачи информации. Напомним, что ширина полосы пропускания одномодового волокна определяется величиной дисперсии и измеряется в пикосекундах на километр и на нанометр спектральной ширины источника (псек/км/нм).  [c.108]

Каким бы длинным ни был отрезок отдельного волокна, никакая система связи не может обойтись без необходимости соединения волокон между собой и использования для этой цели специальных устройств. Сразу определим различия между постоянным соединением или сростком, и разъемным соединительным устройством, или оптическим разъемом. Сращивание волокон потребуется при прокладке кабе ля или при его эксплуатации, если кабель окажется поврежденным, а его волокна сломанными. Разъемные соединительные устройства обычно используются в оконечной аппаратуре. По-видимому, источники излучения и фотодетекторы будут постоянно соединены с коротким отрезком волокна и, таким образом, могут подключаться к ВОЛС с помощью стандартного соединительного устройства. Это позволяет раздельно испытывать источники излучения и фотодетекторы и в случае необходимости производить их замену. Сростки и оптические разъемы могут потребоваться как для соединения отдельных волокон, так н одновременного соединения многих волокон, уложенных в кабель. Каждый сросток или разъем будет вносить дополнительные потери, и необходимость минимизации этих потерь приводит к жестким допускам на рассогласование волокон при их соединении. Рассогласование волокон возникает из-за имеющихся в соединяемых волокнах различий в числовой апертуре (Ап), профиле показателя преломления, диаметре сердцевины или ошибок во взаимной ориентации волокон, при их соединении. Эти допуски в самом деле очень жесткие, особенно для одномодовых волокон, у которых диаметр сердцевины составляет 5. .. 10 мкм. Обычно сдвиг соединяемых волокон относительно друг друга приводит к значительно более серьезным последствиям, чем их рассогласование по углу или (в случае разъемов) наличие зазора между торцами. Это хорошо видно на рис. 4.9, где приведены результаты измерений дополнительных потерь при соединении градиентных волокон.  [c.107]

В данном параграфе предположим, что стоимость оптического и электрического ретрансляторов одинакова. В действительности это не так, оптические ретрансляторы в несколько раз дороже, особенно те, которые требуют использования лазера и ЛФД. Однако существует значительная вероятность того, что большая простота и меньшее количество элементов оптического ретранслятора приведут, по существу, не только к уменьшению капиталовложений, но и к повышению их надежности, а также к снижению стоимости обслуживания. Для оценки порядка величины затрат можно принять стоимость двустороннего ретранслятора с пропуск1 ой способностью 2 Мбит/с, равной приблизительно 100. .. 200 дол., а стоимость двустороннего ретранслятора с пропускной способностью 140 Мбит/с — около 5000 дол. Стоимость прокладки многожильного кабетя составляет примерно 0,05 дол. за метр (на 1 пару), а коаксиального кабеля — приблизительно 1 дол. за метр, в зависимости от поперечного сечения. Стоимость самого волокна в составе многоволоконного оптического кабеля может составлять около 1. .. 2 дол. за метр. Волокно, изготовляемое в достаточном количестве с помощью непрерывного технологического процесса, например методом двойного тигля, несомненно дешевле градиентного или одномодового волокна, которые требуют соответственно тщательного и очень точного контроля профиля показателя преломления и диаметра сердцевины. Однако основная часть стоимости кабеля приходится не на стоимость соответственно волокна, а на его изготовление. В результате многоволоконные оптические кабели выгодно использовать в тех случаях, когда нужно обеспечить требуемую информационную пропускную способность. (Было установлено, что при достаточно большом объеме производства, скажем, 10 или 10 километров в год, себестоимость необработанного градиентного и ступенчатого волокна, полученного методом осаждения из газовой фазы, может составлять приблизительно 100 дол. за километр, а необработанное волокно, изготавливаемое методом двойного тигля, могло бы стоить приблизительно 10 дол. за километр. Это показывает, что прогноз может быть оптимистичным.)  [c.433]


Успех применения длинноволновых многомодовых оптических систем связи 3 решающей степени зависит от возможности производства градиентных волокон с малыми отклонениями в профиле показателя преломления, минимальной межмодовой дисперсией и умеренной стоимостью. Достоинство такого волокна — реальность создания дешевой, простой и надежной ВОЛС с высокими параметрами при использовании СД в качестве источника излучения и /7-1-п-фотодиода в качестве фотодетектора. Кроме того, многомодовые волокна легче сращивать и соединять между собой и с другими элементами по сравнению с одномодовыми волокнами. Применение лазерных источников излучения может увеличить информационную пропускную способность и достижимую дальность связи, хотя в этом случае становится проблемой модальный шум. Преимущество использования длинноволрювых ЛФД более проблематично. Б настоящее время их недостатками являются высокий темновой ток в лавинной области и высокий коэффициент шума, поэтому на длинных волнах они имеют мало преимуществ по сравнению с /з-г-л-фотодиодами или вообще их не имеют.  [c.446]


Смотреть страницы где упоминается термин Оптические волокна одномодовые : [c.292]    [c.59]    [c.310]    [c.130]    [c.429]    [c.457]    [c.62]    [c.416]    [c.465]    [c.328]    [c.55]    [c.56]    [c.443]    [c.445]    [c.450]   
Дифракция и волноводное распространение оптического излучения (1989) -- [ c.5 ]



ПОИСК



Волокна

Одномодовые волокна

Оптические волокна



© 2025 Mash-xxl.info Реклама на сайте