Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поступательное динамика

Рассмотрим приложения общих теорем динамики к задачам о движении абсолютно твердого тела. Так как изучение поступательного движения твердого тела сводится к задачам динамики точки, то начнем с рассмотрения вращательного движения вокруг неподвижной оси.  [c.323]

Сопоставление уравнений (26.8) и (26.1) показывает, что при равномерном прямолинейном поступательном переносном движении уравнение (26.8), определяющее относительное ускорение материальной точки Wr, не отличается от основного уравнения динамики (26.1), определяющего абсолютное ускорение точки w. В этом случае относительное движение с динамической точки зрения не отличается от абсолютного движения.  [c.79]


ГЛАВА XII. ДИНАМИКА ПОСТУПАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЙ ТВЕРДОГО ТЕЛА  [c.209]

Задачи динамики поступательного движения твердого тела решаются посредством теоремы о движении центра инерции системы материальных точек. Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном же движении твердого тела траектории всех точек одинаковы, а скорости и ускорения их соответственно равны.  [c.147]

Если при решении задачи динамики движение точки системы разлагается на переносное поступательное вместе с полюсом и относительное по отношению к полюсу, то целесообразно принять за полюс центр инерции системы материальных точек. Тогда, применив теорему о движении центра инерции, можно определить переносное поступательное движение точек системы.  [c.147]

Эту задачу можно решить также с помощью уравнения динамики переносного движения. Как известно, переносное поступательное движение системы происходит как движение абсолютное под действием всех внешних сил системы и сил инерции масс в их относительном движении, т. е.  [c.158]

Эту задачу, подобно предыдущей, можно решить также и с помощью уравнения динамики переносного поступательного движения.  [c.164]

Задачи 269 и 270 были решены двумя способами применением теоремы о движении центра инерции системы материальных точек и с помощью уравнения динамики переносного поступательного движения. Степень трудности решения задач этими способами следует считать примерно равноценной.  [c.165]

Теорема об изменении главного момента количеств движения системы материальных точек (со случаем сохранения) в относительном движении по отнощению к центру инерции системы щироко применяется в задачах динамики плоского движения твердого тела (см. следующий параграф) и движения свободного твердого тела, т, е. в тех случаях, когда движение твердого тела можно разложить на переносное вместе с осями координат, движущимися поступательно С центром инерции, и относительное по отнощению к этим осям.  [c.242]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра инерции системы материальных точек. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить массы материальных точек, их уравнения движения, внешние силы системы. Решение обратных задач упрощается в случаях, когда главный вектор внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы. Труднее решать обратные задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения и скоростей точек системы.  [c.540]


Сейчас мы перейдем к рассмотрению движения точки по отношению к системам отсчета, как угодно перемещающимся по отношению к инерциальной системе отсчета. Такое движение точки называют относительным. Ниже будет показано, что система отсчета, перемещающаяся по отношению к инерциальной системе поступательно, равномерно и прямолинейно, будет также инерциальной, т. е. в ней основные законы динамики будут справедливы. Если же движение данной системы отсчета по отношению к инерциальной не является поступательным, равномерным и прямолинейным, то эта система  [c.438]

Динамика поступательного движения  [c.154]

Глава 3. Динамика поступательного движения  [c.156]

Глава 3. Динамика поступательного движении  [c.174]

Движение свободного твердого тела. Как известно, движение свободного твердого тела слагается из поступательного движения вместе с полюсом, в качестве которого при решении задач динамики выбирают обычно центр масс С тела, и из движения вокруг центра масс, i k OKpyr iie-подвижной точки (см. 63). Если на тело действуют внешние силы F, F%, то движение полюса С описывается теоремой о движении.центра масс тас= 1 г> где m — масса тела. В проекциях на неподвижные оси это равенство дает  [c.344]

Сообщим мысленно системе во (мож-ное поступательное перемещение например, в сторону движения грузов. Составим общее уравнение динамики, применяя (117.3), в которое не войдут нормальные реакции боковых граней призмы W, и Л. 2, направления которых перпендикулярны к возмоисным перемещениям грузов  [c.321]

Законы динамики описывают механическое движение материальных тел по отношению к так называемым неподвижным или аб-солютн.ым осям координат и по отношению к осям, которые движутся поступательно и равноме))но по отношению к неподвижным (инерциальные оси). Начало абсолютной системы координат принимается в центре Солнца, а оси направляются на три отдаленные звезды. Конечно, в природе, где материальные тела находятся во взаимодействии и движении, нет неподвижных осей координат. Однако в зависимости от требований, предъявляемых к результатам подсчетов, можно и другие координатные системы приближенно считать  [c.9]

Для изучения поступательного движения твердого тела вводится понятие материальной точки [1]. Это позволяет сделать динамику материальной точки физически ощутимой, облегчает анализ упражнений и сопоставление с опытными данными аксиоматически вводимых принципа относительности Галилея, принципа детерминированности и законов Ньютона. Анализируются ограничения на форму законов механики и физики, следующие из принципов относительности и детерминированности [5, 67]. Ставятся основные задачи механики. Выявляются преимущества различных систем криволинейных координат для описания движения точки. Доказываются основные теоремы механики и сообщаются основные приемы, применяемые для исследования движения. Как основа качественного анализа поведения механических объектов подробно изучаются фазовые портреты осцилляторов. На их примере демонстрируется влияние потенциальных и диссипативных сил, а также резонансные явления различных типов [37]. Изучается динамика материальной точки, стесненной связями [61].  [c.11]

Столь подробное изучение движения материальной точки вызвано двумя обстоятельствами. Во-первых, построенная теория имеет большое самостоятельное значение, как теория широко ра1Спростра-ненного на практике поступательного движения реальных тел. Во-вторых, методически она создает достаточно удобный каркас для построения статики и динамики системы материальных точек, а также доставляет ряд стандартов исследования задач механики.  [c.11]


Смотреть страницы где упоминается термин Поступательное динамика : [c.293]    [c.119]    [c.283]    [c.183]   
Курс теоретической механики Часть1 Изд3 (1965) -- [ c.403 ]



ПОИСК



Динамика поступательного движения

Динамика поступательного движения тела

Динамика поступательного и вращательного движений твердого тела

Динамика твердого тела Кинетическая энергия поступательного и вращательного движения твгрдого тела

Динамика твердого тела Поступательное и вращательное движение твердого тела

Динамика твердого тела движения вращательное, поступательное и параллельно плоскости

Общие теоремы динамики относительно поступательно движущейся системы центра масс (системы осей Кенига)

Основное уравнение динамики для поступательного движения

Сравнение формул динамики для поступательного и вращательного движений твердого тела



© 2025 Mash-xxl.info Реклама на сайте