Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракционная спектроскопия

Решетка была вновь открыта в 1821 г. Фраунгофером, который дал основы теории дифракции в параллельных лучах и осуществил при помощи дифракционного спектроскопа важнейшие открытия (з частности, открыл темные линии в сплошном спектре Солнца — фраунгоферовы линии).  [c.208]

Рис. 6.10. Спектр излучения Венеры, а-обычная дифракционная спектроскопия б-результат фурье-спектроскопии, показывающий детали вращательной структуры СО2 в области вблизи 6505 см [21]. Рис. 6.10. <a href="/info/22667">Спектр излучения</a> Венеры, а-обычная дифракционная спектроскопия б-результат <a href="/info/14755">фурье-спектроскопии</a>, показывающий детали вращательной структуры СО2 в области вблизи 6505 см [21].

Фурье-спектроскопия дает ряд преимуществ перед более прямыми методами (например, перед методом дифракционной спектроскопии), существенных в некоторых случаях. Во-первых, это преимущество большей светосилы (геометрического фактора )), на котором мы здесь не задерживаемся [5.19]. Большой интерес  [c.165]

Дифракционная спектроскопия 165 Дифракция 213—219  [c.513]

Майкельсон применил интерферометрическое наблюдение для оценки малых угловых расстояний между двойными звездами, а также для оценки углового диаметра звезд. Метод Майкельсона, равно как и применение его к определению размеров субмикроскопических частичек, будет изложен ниже (см. 45). Наконец, понятно, что интерференционные методы, позволяющие с огромной точностью определять длину волны, могут служить для самых тонких спектроскопических исследований (тонкая структура спектральных линий, исследование формы и ширины спектральных линий, ничтожные изменения в строении спектральных линий). Интерференционные спектроскопы, их достоинства и недостатки будут обсуждены вместе с другими спектральными приборами (дифракционная решетка, призма) в 50.  [c.149]

Различие обусловливается тем, что в дифракционных решетках (включая и эшелон Майкельсона) суммируются N пучков равной интенсивности, тогда как в интерференционных спектроскопах суммируется бесконечное число постепенно ослабевающих пучков.  [c.214]

Легко видеть, что большая разрешающая способность хорошей дифракционной решетки достигается за счет огромных значений N (общего числа штрихов решетки) при незначительном т (2 или 3), тогда как в интерференционных спектроскопах N невелико (не более 20—30), но ш очень велико (десятки тысяч). Произведение тЫ есть число длин волн, представляющее разность хода между крайними световыми пучками, выходящими из прибора. Оно-то и определяет разрешающую способность любого прибора.  [c.216]

Для дифракционной решетки обычно наблюдают спектры второго или третьего порядков, т. е. т = 2 или 3. В соответствии с этим дисперсионная область ДА, = Х/2 или А./3 очень велика. В этом — огромное преимущество дифракционной решетки, которая позволяет анализировать даже белый свет, т. е. очень обширный спектральный интервал (в тысячи ангстремов), тогда как пластинка Люммера—Герке, например, не дает уже отчетливых максимумов, если падающий на нее свет представляет спектральный интервал, превышающий один ангстрем. Поэтому интерференционные спектроскопы пригодны только для анализа очень однородного света, например для спектральных линий, испускаемых разреженными газами. Они оказывают неоценимые услуги при анализе таких линий, позволяя устанавливать наличие нескольких компонент в этой линии (тонкая структура), оценивать ширину линии, наличие изменений (расщеплений) под действием внешних причин (например, эффект Зеемана) и т. д.  [c.218]


Благодаря методу Лауэ решаются две задачи огромной важности. Во-первых, открывается возможность определения длины волны рентгеновских лучей, если известна структура той кристаллической решетки, которая служит в качестве дифракционной. Таким образом создалась спектроскопия рентгеновских лучей, послужившая для установления важнейших особенностей строения атома (ср. 118). Во-вторых, наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения, мы получаем возможность найти эту структуру, т. е. взаимное расстояние и положение ионов, атомов и молекул, составляющих кристалл. Таким путем был создан структурный анализ кристаллических образований, легший в основу важнейших заключений молекулярной физики.  [c.231]

Помимо дифракционных решеток скользящего падения и многослойных интерференционных структур имеется еще два типа дисперсионных элементов, которые используются в спектроскопии элементов МР-диапазона. Речь идет о монокристаллах с межплоскостным расстоянием свыше 0,5 нм и псевдокристаллах , или многослойных молекулярных структурах (ММС). Им посвящена восьмая глава.  [c.9]

Накопленный опыт применения показывает, что существующие кристаллы (и в меньшей степени ММС, имеющие худшие стабильность и дифракционные параметры) удовлетворяют целому ряду требований физического эксперимента и техники и, по-видимому, в ближайшее время сохранят свое значение в спектроскопии мягкого рентгеновского диапазона.  [c.314]

Разрешающая сила современных дифракционных решеток весьма велика. Она достигает 100 000—200 ООО. Реализовать такую разрешающую силу в эксперименте достаточно сложно — необходимо располагать высококачественными длиннофокусными объективами настолько большого диаметра, чтобы дифракция на их оправе не лимитировала разрешающей силы спектрального прибора, по.чтому работают с очень узкими спектральными пи лями, применяют специальные сорта мелкозернистых фотографических пластинок и т.д. Все подобные приемы подробно обсуждены в руководствах по практической спектроскопии. Мы упоминаем о них лишь для того, чтобы показать, что разрешающая сила, реализуемая в эксгкфименте, часто оказывается значительно меньше теоретического значения, вычисленного по приведенным выше формулам.  [c.323]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]

Приведены новейшие данные по оптической, световой, электронной, просвечивающей, растровой, дифракционной, фотоэмиссиоиной и автоионной микроскопии. Описан метод дифрактометрии в медленных электронах и при использовании электронов с высокими энергиями. Рассмотрен микроанализ с помощью электронного зонда, Оже-спектроскопии и др. Изложены сведения о сварных соединениях. С позиций металлографии классифицированы различные способы сварки, исследованы основные изменения структуры прн сварке с растрескиванием в твердом состоянии, прослежено влияние температурного поля на структурные изменения при различных способах сварки.  [c.28]

Интересный спектроскоп предложили Г. Р. Кирхгоф и Р. В. Бунзен. Несмотря на свою простоту, этот прибор имел существенные недостатки и впоследствии был усовершенствован. Для увеличения дисперсии известный немецкий оптик К. А. Штейнгель во второй половине XIX в. создал спектроскоп с четырьмя призмами. Первые три призмы имели преломляющий угол 45°, а четвертая призма 60°. Впоследствии вместо призм в качестве диспергирующего элемента стали применять дифракционные решетки, при помощи которых можно было получить значительное светорассеяние. Первые дифракционные решетки были изготовлены Й. Фраунгофером. Они состояли. либо из рамки с натянутыми в ней тонкими параллельными проволочками, либо из стеклянной пластинки, покрытой сажей с нанесенными на нее штрихами.  [c.348]


Для простых молекул В. у,, как и др. геом. параметры молекулы, можно рассчитать метода.чи квантовой химии. Экспериментально их определяют из значений моментов инерции молекул, полученных путём анализа их вращат. спектров (с.ч. Инфракрасная спектроскопия, Молекулярные спектры. Микроволновая спектроскопия). В. у, сложных молекул определяют методами дифракционного структурного анализа (см. Рентгеновский структурный анализ, Нейтронография, Электронография). в. Г. Дашевский,  [c.239]

Основой оптич. схем С. п. этой группы является диспергирующий элемент дифракционная решётка, зше-летт, эшелле, интерферометр Фабри — Перо, спектральная призма), обладающий угловой дисперсией Дф/ДЯ, что позволяет развернуть в фокальной плоскости изображения входной щели в излучении разных к (рис. 3). Для объективов Oj и обычно используются зеркала, не обладающие хроматич. аберрациями (в отличие от линзовых систем). Если в фокальной плоскости установлена одна выходная щель, схема С. п. представляет собой схему монохроматора, если неск. щелей,— полихроматора, если фоточувствит. слой или глаз,— спектрографа или спектроскопа.  [c.612]

Характер Х,с. влияет на мн. свойства вещества, исследование к-рых позволяет получить информацию о X. с. К экс-пернм. методам изучения X. с. относятся разл. виды спектроскопии (см., напр.. Инфракрасная спектроскопия, Молекулярные спектры, Спектры кристаллов и др.), дифракционные методы (см. Рентгеновский структурный анализ. Электронография, Нейтронография), магнетохи-мия, химическая кинетика, резонансные методы (ЭПР, ЯМР) и др.  [c.408]

Рентгеноструктурный анализ полученных при комнатной температуре образцов механически легированных порошков усложняется вследствие уширения дифракционных линий. Тем не менее эта проблема была решена. Методом сканируюхЦей оже-спектроскопии установлено, что влияние химической неоднородности на уширение линий образца, полученного при МЛ смеси никель—хром, почти такое же, если не меньше, как и в случае стандартного образца, изготовленного сплавлением в жидкой фазе с последующим отжигом [513].  [c.321]

Структура низкоразмерных объектов не может быть определена только на основе метода рентгеновской дифракции. Известно, что наноструктурные многокомпонентные пленки имеют очень широкие дифракционные максимумы низкой интенсивности, что обычно объясняется аморфным состоянием вещества, хотя кристаллическая природа наноструктурных пленок может быть подтверждена другими методами. Поэтому для характеристики низкоразмерных объектов рекомендуется использование комбинированного подхода с применением различных методов, таких как рентгеновская фотоэлектронная спектроскопия, Рамановская спектроскопия, расширенные измерения поглощения рентгеновских лучей тонкой структурой (EXAFS), электронная микроскопия высокого разрешения и спектроскопия энергетических потерь электронов.  [c.480]

Радиоизотопный анализ и метод оже-спектроскопии подтверждают полученные данные о перераспределении легирующих элементов сплава при трении. Они указывают на резкое различие содержания легирующих элементов в поверхностных слоях (вплоть до полного их растворения при формировании сервовитной медной пленки) при разных условиях трения, в частности при использовании смазочных сред разной природы. Установлено [37 ] наличие на рентгенограммах двух систем дифракционных линий, соответствующих материалам с резко различающимися периодами кристаллических решеток, что свидетельствовало о существовании межфаз-ной границы, разделяющей основной материал образца и прилегающий к нему сервовитный слой. Послойный эмиссионный микро-спектральный анализ (с использованием лазерного луча) показал, что под сервовитной пленкой на границе со сталью имеется слой окислов меди, легирующих элементов или примесей толщиной около 0,1 мкм.  [c.281]

Грейсух Г. И. Коррекция монохроматических аберраций третьего порядка дифракционного двухлинзового объектива.— Оптика и спектроскопия,  [c.221]

Шитов В. Г., Грейсух Г. И. Компенсация аберраций в простейших рефракционно-дифракционных оптических системах. — Оптика и спектроскопия,  [c.222]

Если говорить не только об отражательной оптртке, но и об оптике МР-диапазона в целом, то необходимо упомянуть дифракционную оптику нормального падения — прозрачные решетки и зонные пластинки (френелевские линзы), обсуждение которых выходит за рамки книги. Они представляют собой тончайшую регулярную структуру (с размером штриха 0,01—0,1 мкм), свободно висящую или расположенную на пленке толщиной порядка 1 мкм, либо на ажурной поддерживающей арматуре . Изготавливают их методами планарной микроэлектронной технологии. Прозрачные решетки и зонные пластинки используются как в спектроскопии плазмы, так и в микроскопии биологических объектов. Расчетная дифракционная эффективность зонных пластинок равна 15—40 % в диапазоне 2—12 нм.  [c.10]

Развитие дифракционной рентгеновской спектроскопии началось в конце 1920-х годов, когда Комптон и Доан [43] впервые предложили использовать для разложения рентгеновских спектров штриховую решетку, работающую при малых скользящих углах, а Осгуд [80] применил для этой цели вогнутую решетку. Вплоть до 1950-х годов центральной задачей спектроскопии в мягкой рентгеновской области оставалась систематизация спектров и измерение длин волн линий, а основным типом прибора классический спектрограф скользящего падения со сферической решеткой на роуландовском круге (схема Пашена— Рунге или ее модификации). Регистрация спектров проводилась на фотопленку. Достоинствами таких спектрографов являются широкая рабочая область спектра (в типичном случае от 0,5 до 50—100 нм), высокое разрешение, превышающее 10 при оптимальных размерах решетки и входной щели, и универсальность для различных типов источников. Основные недостатки — малая светосила, связанная с аберрационными ограничениями ширины решетки, а также отсутствие пространственного разрешения по высоте щели вследствие астигматизма.  [c.281]


В заключение на рис. 7.25 приведены данные о чувствительности наиболее известных приборов для регистрации излучения космических источников в различных диапазонах длин волн [66, 18]. Наиболее высокой чувствительностью в вакуумной УФ-мяг-кой рентгеновской области спектра обладают спектрометры космического телескопа им. Хаббла, обсерваторий Лайман и АКСАФ. Однако их чувствительность на 3—5 порядков ниже той, которая необходима для наблюдения спектров, наиболее удаленных источников-квазаров с большим красным смещением. Эти данные показывают задачи и перспективы развития спектроскопии космических источников, которая в настоящее время является одной из важнейших областей астрофизических исследований. В частности, развитие рентгеновской космической спектроскопии в будущем будет в значительной степени определяться прогрессом в создании приборов с использованием новых типов дифракционных решеток, оптимизации их сочетания с зеркальной оптикой и улучшением характеристик трактов регистрации.  [c.297]


Смотреть страницы где упоминается термин Дифракционная спектроскопия : [c.305]    [c.315]    [c.197]    [c.362]    [c.622]    [c.660]    [c.376]    [c.651]    [c.651]    [c.150]    [c.110]    [c.282]    [c.298]    [c.299]    [c.299]    [c.299]    [c.299]    [c.298]    [c.298]    [c.222]    [c.220]    [c.298]    [c.299]    [c.222]   
Статистическая оптика (1988) -- [ c.165 ]



ПОИСК



Спектроскоп

Спектроскопия



© 2025 Mash-xxl.info Реклама на сайте