Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент аэродинамический при движении тела поступательном

Из этих формул видно, что аэродинамические силы и моменты при возмущенном движении тела определяются силами и моментами при прямолинейном и равномерном движении (И , и Жо) и производными от сил и моментов по всем двенадцати независимым переменным, причем значения этих производных также соответствуют случаю прямолинейного и равномерного движения. Все эти производные называются производными сопротивления производные по линейным скоростям и ускорениям называются поступательными производными сопротивления, а производные по угловым скоростям и ускорениям—вращательными производными. Так как каждая составляющая аэродинамической силы или момента характеризуется двенадцатью производными сопротивления, то общее их количество для данного тела при данной ориентировке его относительно вектора скорости получается равным 72. Но обычно при расчете устойчивости полета необходимо знать далеко не все пз 72 производных сопротивления.  [c.608]


Рассмотрим влияние начальных условий углового движения, которые реализуются при входе тела в атмосферу, на характер его движения относительно центра масс при спуске. Будем считать, что начальные условия задаются в разреженных слоях атмосферы, где влиянием аэродинамических моментов можно пренебречь. Будем также считать, что кинетическая энергия вращения тела существенно больше работы возмущающих сил, обусловленных влиянием светового давления Солнца, гравитационного и магнитного полей планеты. Рассмотрим случай, когда тело динамически осесимметрично. Тогда его вращательное движение представляет собой регулярную прецессию, при которой продольная ось, проходящая через центр масс, описывает круговой конус относительно неизменного в пространстве направления вектора кинетического момента Qq. Угол полураствора этого конуса обозначим через 2, угол между осью конуса — вектором кинетического момента, и вектором скорости центра масс тела через (р, а угол прецессии, отсчитываемый в плоскости, перпендикулярной оси прецессии, через 993 (рис. 1.7). Последний следует отличать от угла прецессии 7 , который характеризует прецессию тела относительно вектора поступательной скорости при движении в атмосфере.  [c.43]

Рассмотрим движение относительно центра масс осесимметричного тела на начальном атмосферном участке полёта. После входа в атмосферу статически устойчивое тело начинает испытывать действие восстанавливающего аэродинамического момента, который стремится совместить продольную ось с вектором поступательной скорости. Однако движению по тангажу противодействуют гироскопические силы, вызывающие вынужденную прецессию вектора кинетического момента Р относительно вектора скорости центра масс. Вектор кинетического момента отклоняется в ту сторону, куда направлен вектор восстанавливающего аэродинамического момента. На рис. 1.9 изображены различные случаи вращательного движения осесимметричного тела на начальном атмосферном участке полёта, даны проекции траекторий, описываемых носовой точкой тела, на плоскость, перпендикулярную к вектору скорости центра масс.  [c.46]

Можно условно выделить три вида возмущений возмущения, обусловленные медленным изменением во времени параметров поступательного движения по сравнению с изменением параметров вращательного движения возмущения, вызванные действующими на тело малыми демпфирующими моментами и моментами сил вязкого взаимодействия возмущения, вызванные малой инерционно-аэродинамической асимметрией. Если малость двух  [c.49]


В этой главе рассматриваются аэродинамические силы и моменты, действующие на тела при спуске в атмосфере, показана зависимость коэффициентов этих сил и моментов от положения тела относительно набегающего потока. Приведены различные типы уравнений движения тела относительно центра масс при спуске в атмосфере. Анализируется влияние начальных условий на границе атмосферы на характер движения тела на атмосферном участке и получено условие, при выполнении которого можно считать поступательное движение (движение центра масс) медленным по сравнению с вращательным (движение тела относительно центра масс), что позволяет воспользоваться методами теории возмущений при поиске приближённых решений.  [c.10]

Описание вращательного и поступательного движений тела при спуске в атмосфере требует совместного рассмотрения системы с шестью степенями свободы, что обусловлено их взаимовлиянием друг на друга. Так, величины аэродинамических моментов зависят от параметров поступательного движения — скоростного напора и чисел аэродинамического подобия (М, Re и другие), а величины аэродинамических сил, определяющих поступательное движение тела, зависят от расположения тела относительно воздушного потока, то есть от углов атаки а и скольжения /3, или от пространственного угла атаки а-п и угла аэродинамического крена (угла собственного вращения) (рп- Найти точное аналитическое решение полной системы нелинейных обыкновенных дифференциальных уравнений, описывающих движение тела при спуске в атмосфере, не представляется возможным, поэтому возникает потребность в поиске приближённых решений. В данном случае используются, как правило, методы теории возмущений, для непосредственного использования которых требуется выделить малые параметры в уравнениях движения, характеризующие возмущения.  [c.49]

Отметим некоторые особенности движения спускаемых аппаратов, имеющих форму сферы или тонкого конуса, восстанавливающий момент которых пропорционален sino [15]. Поступательное движение сферического тела не зависит от вращательного движения, лобовое аэродинамическое сопротивление не зависит от угла атаки, а подъёмная аэродинамическая сила равна нулю и, следовательно, рассеивание точек посадки весьма незначительно. С другой стороны из-за большого лобового сопротивления время спуска сферы существенно превышает время спуска тонких, заострённых тел, что в некоторых практических задачах может иметь определяющее значение. Кроме того, сферические тела обладают весьма малым аэродинамическим демпфированием, что при определённых начальных условиях может приводить к возникновению колебаний тела относительно центра масс с большими амплитудами и значительным поперечным перегрузкам в процессе спуска. Отсюда ясно, что для описания движения сферического тела вокруг центра масс в полной мере не пригодны ни линейные, ни квазистатические математические модели.  [c.98]

Д. Чумаков правильно отметил, что на летательный аппарат в полете действуют следующие силы подъемная, пропульсивная, тяжести и сопротивления. Основываясь на хороших знаниях теоретической механики и собственных представлениях об особенностях полета будущего винтокрылого аппарата, автор рассмотрел характер его движения при различных условиях действия упомянутых сил и попытался дать рекомендации по их балансировке для обеспечения полета на установившихся режимах. Он указал ряд причин возможной разбалан-сировки вертолета несовпадение точек приложения внешних сил, не-идентичность несущих винтов, гироскопические моменты вращающихся частей, ошибки пилота, зависимость действующих на аппарат сил от режима полета, непостоянное положение центра тяжести, влияние ветра — и сделал вывод необходимости установки органов управления для балансировки сил и моментов относительно всех трех осей. Как основное средство продольно-поперечного управления предлагалось смещение центра тяжести перемещением тела летчика, а вспомогательное — аэродинамические рули и тормозные поверхности. Чумаков резонно заметил, что рули эффективны только при полете с поступательной скоростью, рекомендовав для безопасности осуществлять первые подъемы в воздух на канатах привязи. В заключение он предло-  [c.68]



Смотреть страницы где упоминается термин Момент аэродинамический при движении тела поступательном : [c.341]    [c.52]   
Аэродинамика Часть 1 (1949) -- [ c.322 ]



ПОИСК



Аэродинамический шум

Движение поступательное

Движение тела поступательное

Момент аэродинамический



© 2025 Mash-xxl.info Реклама на сайте