Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защита конструкция анода

Для определения напряжения Е , необходимого для защиты конструкции, надо добавить к значение анодной поляризации вспомогательного анода АУд при данной силе тока и произведение последней на сумму всех остальных сопротивлений в цепи защиты и вычесть начальный потенциал конструкции  [c.364]

Сплав свинца с серебром предназначается преимущественно для применения в морской воде и в средах, содержащих большие количества хлоридов. Для применения на судах и для защиты подводных стальных конструкций аноды из сплава свинца с серебром особенно эффективны, поскольку они к тому же сравнительно нечувствительны к механическим нагрузкам. Сплав, первоначально предложенный Морганом [8, 9], содержит 1 % Ag и 6 %Sb (остальное — свинец). В табл. 8.2 этот материал обозначен как сплав 1. Имеется и другой сплав с 2 %  [c.202]


Конструкции анодов для внутренней защиты от коррозии  [c.213]

Растворимые аноды. Использовать такие аноды начали со времен Фарадея. Основные Преимущества этой системы — простота и минимальная потребность в контроле. Для защиты конструкций, погружаемых в морскую воду, применяют протекторы из цинка, алюминия и магния. Характеристики некоторых распространенных протекторов представлены в табл. 69.  [c.171]

Магний. С появлением протекторов из высокочистого цинка и в последнее время из тройных алюминиевых сплавов магниевые протекторы стали значительно реже применяться для защиты конструкций в морской воде. Однако в некоторых специальных случаях они используются по-прежнему. Наиболее предпочтительным является сплав Mg—6А1—Э2п, в котором должно быть менее 0,003% Fe и Ni и менее 0,10 % Си. Более высокое по сравнению с другими типами анодов значение потенциала и меньшая плотность делают магниевые протекторы в некоторых случаях более предпочтительными даже при 50 %-ном коэффициенте полезного использования сплава. Например, разработан 90-кг протектор, способный поддерживать силу тока  [c.174]

Свинец и его низколегированные сплавы с сурьмой, висмутом или мышьяком, а также содержащие иногда присадку серебра, рекомендуют и часто применяют в качестве малорастворимых анодов, для электрохимической обработки металлических деталей (например, для нанесения гальванических покрытий), и особенно для электрохимической катодной защиты конструкций в морской воде и в подземных условиях [51, 226].  [c.290]

Л — катод, — анод, а — схема электрохимической защиты конструкции магниевым протектором, г — модель трехэлектродной электрохимической системы (/С, — катод коррозионного элемента. Л, —анод коррозионного элемента. Л, — анод-протектор, защ = а>-  [c.10]

Конструкции анодов. При выборе конструкции анодов учитывают особенности и условия эксплуатации защищаемого объекта, материал апода, значение защитного тока и срока службы защиты. Кроме этого, при  [c.72]

Катодная защита состоит в присоединении к защищаемой конструкции анода протектора с более отрицательным электрохимическим потенциалом. Катодную или протекторную защиту широко применяют при защите от морской и подземной коррозии металлоконструкций, коммуникаций, трубопровода, сосудов и т. д. В качестве анодов-протекторов для защиты стальных изделий обычно применяют магниевые сплавы, сплавы цинка и алюминия.  [c.214]

При осуществлении защиты конструкции за счет подачи тока извне (катодная защита), положительный полюс источника постоянного тока должен быть соединен проводником с вспомогательным электродом (анодом), контактируемым с агрессивной средой.  [c.294]


Цинковые аноды должны помещаться в оболочку из гипса и бентонита, смешанных в равных пропорциях. Открытая конструкция анода уменьшает риск блокировки тока продуктами коррозии, однако какая бы ни применялась оболочка, невозможно устранить образование пленки, препятствующей прохождению тока на обычных цинковых анодах, содержащих примеси. Только с некоторого времени, когда стали применять цинковые аноды специального состава, такое применение цинка для катодной защиты получило значительный интерес.  [c.267]

Рис. 257. Электрическая схема катодной защиты ЯГ — источник постоянного тока — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления npi пра — сопротивление соединительных проводов — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а Рис. 257. <a href="/info/4765">Электрическая схема</a> <a href="/info/6573">катодной защиты</a> ЯГ — <a href="/info/578855">источник постоянного тока</a> — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления npi пра — сопротивление <a href="/info/305462">соединительных проводов</a> — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а
Для осуществления протекторной защиты к конструкции присоединяют протектор, обычно в виде пластины или цилиндра, который в данной среде обладает более электроотрицательным потенциалом, чем любой участок защищаемой конструкции. Схематически такая защита (рис. 201) сводится к превращению электродом П анодных участков А данной конструкции, состоящей в простейшем случае из короткозамкнутой системы двух электродов А—К, в катодные. В этом случае анод посылает электроны во внешнюю цепь меньше или даже сам начинает их принимать от присоединенного протектора.  [c.301]

На эффективность электрохимической защиты оказывает также влияние расположение анодов. Они должны быть расположены так, чтобы иа поверхности защищаемой конструкции был обесп( чен ток равномерной плотности.  [c.305]

Второй электрод 3 (анодное заземление) соединяется с положительным полюсом источника тока и действует в качестве анода. Катодная защита возможна только в том случае, когда защищаемая конструкция и анодное заземление находятся в электрическом и электролитическом контакте первое достигается с помощью металлических проводников, а второе благодаря наличию электролитической среды 5 (грунт), в которую нагружена защищаемая конструкция и анодное заземление.  [c.5]

Опыт эксплуатации показывает, что срок службы анодов любой конструкции редко превышает 10 лет. Дело в том, что службы по эксплуатации средств электрохимической заш,иты, стремясь к 100%-ой защищенности определенных коммуникаций, добиваются этого за счет повышения потенциала на отдельных сетях и увеличения общего защитного тока. Выпускаемые промышленностью СКЗ мощностью Зч-5 кВт закладываются в проекты электрохимической защиты, и строительные организации, осуществляя защиту отдельных сетей, создают в земле блуждающие токи огромной величины, которые усугубляют процесс коррозии сооружений из чугуна и железобетона. Наибольший эффект применения катодной защиты достигается для магистральных нефтегазопроводов с хорошей изоляцией  [c.14]

Наряду с цилиндрическими и коническими анодами в воде применяют также аноды в форме дисков и блоков. Если в распоряжении имеется подходящее место и нет опасности повреждения анодов, например якорями, то для защиты крупных объектов, например шпунтовых стенок и мостовых перегружателей, наряду с несколькими параллельно соединенными стержневыми анодами иногда применяют также и рамки типа плетней. Такие рамки ставят на дно они состоят из большого чис.ча анодов — обычно стержневых, расположенных рядом один с другим в электроизолирующих приспособлениях. Для расчета сопротивления растеканию тока с таких групп анодов необходимо учитывать взаимное влияние отдельных анодов (см. раздел 24.2). В последнее время для сооружений в прибрежном шельфе применяют и плавучие аноды. Ток с них растекается с наружной стороны цилиндрического или сферического поплавка, который соединен якорным канатом и кабелем с опорным каркасом на морском дне, так что корпус анода находится во взвешенном состоянии в воде на определенной высоте от дна. Преимуществом такой конструкции является возможность проведения ремонтов без нарушения работы самой морской площадки (см. раздел 17.2.3). Кроме того, при достаточном удалении анодов от объекта защиты может быть достигнуто желательное равномерное распределение тока.  [c.210]


Для наружной защиты судов (см. раздел 18.3) нашли применение аноды в основном двух форм. Одну конструкцию предложил Морган [8, 9] она применяется предпочтительно при изготовлении анодов из сплавов свинца с серебром. Имеется в виду вытянутый трапецеидальный корпус из пластмассы (обычно полиэфира, армированного стекловолокном), в боковых стенках которого размещены активные анодные по-  [c.211]

В последние годы для наружной защиты судов от коррозии применяют также буксируемые аноды. Чтобы улучшить распределение тока, их буксируют за судном. Наиболее благоприятное расстояние между буксируемым анодом и корпусом судна зависит от скорости движения судна и от действующего напряжения. Известны инертный анод, разработанный Военно-морским флотом США, и проволочный анод из алюминиевого сплава, разработанный Королевским Роттердамским регистром Ллойда (KRL). Инертный анод представляет собой серебряный корпус длиной 1200 и диаметром 60 мм, покрытый на поверхности растекания тока тонким слоем сплава платины и палладия. Анод конструкции KRL выполнен в виде проволоки диаметром 8 мм из А1 сплава, которая намотана на корме на барабан и должна сматываться два раза в сутки в соответствии с израсходованной длиной.  [c.212]

Наряду с описанными конструкциями для защиты кингстонных выгородок, струйных рулей и черпаков применяют аноды и другой формы. Они обычно представляют собой уменьшенные варианты описанных выше плоских анодов и имеют чаще всего круглую форму в струйных рулях и черпаках их размещают почти всегда в углублениях. Прутковые аноды типа применяемых для внутренней защиты здесь теперь используют лишь в редких случаях, поскольку они нарушают равномерное обтекание и даже вызывают повреждение покрытия из-за образующихся за ними завихрений воды.  [c.212]

Трубопроводы большого диаметра можно защищать изнутри стержневыми анодами из платинированного титана, у которых платиновое покрытие имеет только головка, расположенная в средней точке поперечного сечения анода. Вместо такой конструкции с ограниченной зоной защиты в резервуарах, а иногда и в трубопроводах применяют проволочные аноды f30]. При этом анодной поверхностью является титановая проволока диаметром 3 мм. Поверхность проволоки частично платинирована, причем длина платинового покрытия и расстояния между отдельными платинированными участками могут варьироваться в соответствии с предъявляемыми требованиями, в частности в зависимости от необходимой величины защитного тока. Наименьшая длина платинированных участков может составлять 30 мм, что соответствует площади поверхности около 3 см . При плотности анодного тока  [c.214]

Для защиты стальных конструкций на трубчатых сваях применяют преимущественно четыре следующих способа прокладки анодов, а для защиты шпунтовых стенок — только два последних [Ю]  [c.343]

В последние годы внутренняя катодная защита резервуаров для воды приобретает все большее значение. Защита применяется для резервуаров для свежей питьевой воды, для балластных танков с морской водой и танков для хранения воды, для резервуаров питательной котловой воды и т. д. Внутренняя защита особенно эффективна и экономична в сочетании с подходящими покрытиями также и для установок сложной конструкции. Размещение анодов принимается в зависимости от формы и размеров резервуаров. В случае прямоугольных резервуаров защита в области кромок и углов связана с трудностями. Здесь для обеспечения достаточного распределения тока целесообразно применять кольцевые электроды [7]. Внутренняя защита цилиндрических пустотелых резервуаров осуществляется проще.  [c.382]

Предположим, что конструкция покрыта более активным металлом, например цинком, и в покрытии цинка возникла трещина (рис. 2 23, а). Над поверхностью покрытия образовался адсорбированный слой воды или слабого раствора кислоты Цинк и железо образуют гальваническую пару, катодом которой является химически более активный цинк, анодом — менее активное железо. Как во всяком гальваническом элементе, катод, т. е. цинк, будет непрерывно растворяться, а анод, т е. железо, будет сохраняться целым. Такой вид защиты называют анодным.  [c.89]

Цинк. Цинковые покрытия, предназначенные для противокоррозионной защиты стальных конструкций, характеризуются не только защитными свойствами самого цинка, но и его положением относительно железа в электрохимическом ряду напряжений. Стандартный потенциал составляет —0,76 В, а железа —0,44 В. При нарушении сплошности покрытия образуется коррозионный элемент, в котором цинк действует как анод и защищает железную основу до тех пор, пока не разрушится на значительной площади.  [c.38]

Так как пленка является плохим проводником электронов, катоды ограничены участками более тонкой пленки, пропускающей электроны. Создающийся при этом коррозионный потенциал обычно является положительным по отношению к цинку и (в зависимости от обстоятельств) положительным или отрицательным по отношению к стали. Потенциал алюминия в морской воде равен —0,55 В, т. е. примерно на 0,10 В отрицательнее потенциала стали. Однако этой разности потенциалов достаточно, чтобы обеспечить протекторную защиту стали от анодного растворения. В связи с этим алюминиевые аноды широко используются для протекторной защиты стальных конструкций в морской воде.  [c.42]

Для катодной защиты в почвах получили распространение железокремниевые аноды и стальные электроды в коксовой мелочи, для работы в морских условиях — платинированные титановые аноды. Размеры, конструкция, число анодов, место их расположения выбираются из условий допустимых анодных плотностей тока, электропроводности среды, обеспечения заданного потенциала и плотности тока на защищаемом объекте, особенностей эксплуатации.  [c.142]


Расчет катодной защиты сводится к расчету распределения электрического поля, создаваемого гальванической системой катод (защищаемая поверхность) — аноды (система протяженных или точечных вспомогательных электродов). Алгоритмы и результаты расчетов для многих вариантов конструкций катодов и анодов приведены в [6]. Рассмотрим два важнейших частных случая — защиту плоских металлоконструкций и внутренней поверхности трубопроводов [7].  [c.63]

Рис. 46. Схема анодной защиты химического аппарата с центрааьным расположением катода 1 - источник питания (регулятор потенциала) 2 - защищаемая конструкция (анод) J-катод - электрод сравнения Рис. 46. Схема <a href="/info/6490">анодной защиты</a> химического аппарата с центрааьным расположением катода 1 - <a href="/info/121496">источник питания</a> (<a href="/info/341763">регулятор потенциала</a>) 2 - защищаемая конструкция (анод) J-катод - электрод сравнения
Станция катодной защиты — это устройство для катодной поляризации защищаемых конструкций с помощью внешнего тока. Они представляют собой комплекс, состоящий из источника постоянного тока с двумя основными линиями для поляризации анодов и для катодной защиты конструкции. Линии контроля потенциалов и защитного заземления являются вспомогательными. К станции относятся также электроизмерительные приборы, защита от атмосферного электричества, автоматическое регулирование разности потенциалов конструкция — земля в местах дренажа, телеконтроль, защита от попадания под напряжение обслуживающего персонала, приборы для измерения скорости коррозии и др.  [c.67]

Использование магниевых анодов, удовлетворяющих спецификации MIL-A-2I412A, цинковых анодов, удовлетворяющих спецификации MIL-A-18001H, или алюминиевых анодов с подходящими свойствами позволяет легко обеспечить надежную катодную защиту конструкций в морской воде. Удовлетворительными электрохимическими свойствами обладают протекторы из сплава алюминия с небольшими добавками цинка и ртути, однако токоотдача тагах анодов может существенно снижаться в анаэробных донных отложениях, покрытых водой.  [c.204]

Катодная зашита состоит в присоединении к защищаемой конструкции анода протектора с более отрицательным электрохимическим потенциалом. Протектор (от слова prote tion — защита) и служит таким анодом, гфепятствующим разрушению защищаемого сплава сам протектор гфи коррозии постепенно разрушается.  [c.496]

В случае необычно высокого сопротивления на вспомогательных анодах иногда применяются ламповые выпрямители. Мотор-генераторы используются мало. Генераторы, работающие на газе, употребляются на некоторых длинных трубопроводах природного газа, и топливом для них служит этот же газ. Применяются и генераторы, работающие от ветродвигателей, если местность этому благоприятствует. Иногда они сочетаются с аккумуляторными батареями, которые работают в безветре-ную погоду. Но чаще в периоды безветрия защита конструкции держится на поляризации.  [c.977]

Присоедннение.м защищаемой конструкции к электроду (аноду), имеющему в данной среде достаточно отрицательный потенциал (рис. 41). Этот вид защиты  [c.66]

СКЗ - станция катодной защиты Г/ - сопротивление соединительного провода СКЗ - защищаемая конструкция - сопротивление защищаемой конструкции гз - переходн( е сопротивление между защищаемой конструкцией и коррозионной средой Г4 - сопротивление вспомогательного электрода (анода) rj - сопротивление соединительного провода анод - СКЗ  [c.69]

Для водных сред, например для защиты подводных стальных конструкций и сооружений в прибрежном шельфе, а также для внутренней защиты резервуаров, тоже применяют в основном цилиндрические аноды, конструкция которых описана в разделе 8.5.1. Кроме таких материалов как графит, магнетит и ферросилид, дополнительно используют еще и аноды из сплавов свинца с серебром, а также платинированный титан, ниобий или тантал. Впрочем, такие аноды обычно выполняют не сплошными, а в форме труб. В конструкциях из сплавов свинца с серебром это делают ввиду большой массы анодов и сравнительно малой плотности анодного тока в случае платинированных вентильных металлов коррозионному износу и без того подвергается только платиновое покрытие. К тому же трубчатая форма позволяет получить большую площадь поверхности и тем самым больший анодный ток. На подсоединения анодоа из сплавов свинца с серебром распространяются рекомендации, приведенные в разделе 8.5.1. Однако можно припаивать кабель и непосредственно к материалу анодов при помощи мягкого припоя, если обеспечена особо эффективная разгрузка кабеля от растягивающих напряжений. В случае титана это невозможно. Такие аноды должны быть снабжены (в отдельных случаях тоже привариваемым) резьбовым соединением, изготовленным также из титана. В этом случае кабель свинчивается с кабельным наконечником, который тоже может быть изготовлен из титана. Все соединение окончательно заливается литой смолой. Иногда и всю трубу заполняют подходящей заливочной массой. Ввиду плохой электропроводности титана целесообразно в случае сравнительно длинных анодов с большой нагрузкой осуществлять подвод тока параллельно на обоих концах.  [c.210]

На рис. 20.10 показана конструкция центробежного насоса с катодной защитой из оловянной бронзы G—SnBzlO по DIN 1705 [11], рабочее колесо которого выполнено в виде анода с наложением тока от внешнего источника, причем дополнительный стержневой электрод введен внутрь всасывающего патрубка. Еще один стержневой анод располагается в нагнетательном патрубке насоса (см. рис. 20.10,6). Рабочее колесо, стержневые аноды и защитная втулка вала выполнены из платинированного титана. Вал насоса изготовлен из сплава uAlllNi по DIN17665. Подшипники качения электрически изолированы от неподвижных деталей поливинилхлоридными втулками и закреплены в требуемом положении подшипниковыми крышками из твердого полиэтилена. Вал уплотняется сальниковой втулкой с набивкой втулка футерована поливинилхлоридом. Грундбукса сальника тоже изготовлена из поливинилхлорида. Передача усилия от электродвигателя обеспечивается через изолирующую муфту с круговыми зубьями и по-  [c.389]

Одной из усовершенствованных форм катодной внутренней защиты является электролизный способ защиты при помощи алюминиевых протекторов-анодов, питаемых током от внешнего источника он применяется для черных металлов без покрытий и горячеоцинкованных в системах снабжения холодной и горячей водой. Алюминий применяют как материал анода потому, что продукты его анодной реакции не ухудшают потребительских свойств воды и защищают трубопроводы, подсоединенные к резервуару, благодаря образованию защитного покрытия [7—9]. Наряду с катодной внутренней защитой резервуара и встроенных в него конструкций, например нагревательных поверхностей, при электролитической обработке воды происходит также и изменение ее параметров. Эффект защиты от коррозии обусловливается коллоидно-химическими процессами образования поверхностного слоя И обеспечивается не только для новых установок, но и для старых, уже частично пораженных коррозией [9].  [c.406]

Если поверхность имеет органическоё покрытие, то требуется значительно меньший ток, который необходим лишь в порах и дефектах покрытия. Для защиты стали с обычным для стальных цистерн битумным стеклоармированным покрытием требуется ток около 0,1-1 мА/м . При полиэтиленовых или эпоксидных покрытиях ток еще ниже - 0,01-0,1 мА/м . Когда катодная защита сочетается с органическим покрытием, распространение тока по защищаемой конструкции получается очень хорошим и достаточно иметь только несколько правильно расположенных анодов.  [c.69]


Алюминиевые материалы в воде можно предохранить от питтинга ( помощью катодной защиты, если поддерживать электродный потен циал ниже потенциала питтинговой коррозии в данной систем материал - среда. Однако катодное выделение водорода ведет t повышению pH, и при чрезмерном его повышении алюминий може-подвергнуться коррозии. Такой перезащиты следует избегать, следз за тем, чтобы электродный потенциал не опускался ниж< определенной критической величины в почве и пресной воде - эк -1,2В (по отношению к медно-сульфатному электроду). На практике алюминий может быть защищен с помощью гальванически жертвенных анодов, например цинковых или цинкалюминиевы> анодов в морской воде магниевых анодов для конструкций в пресной или солоноватой воде, а также для неокрашенных поверхностей пол землей цинковых - для окрашенных подземных конструкций. Катодная защита может быть достигнута также путем плакирования менее благородным металлом, чем основа. Для нелегированногс алюминия это может быть, например покрытие из A Zn .  [c.128]

Электрохимическая защита - уменьшение скорости электрохимической коррозии металлических конструкций при их поляризации. Это уменьшение скорости коррозии может быть достигнуто как катодной, так и анодной поляризацией металлической конструкции. При анодной поляризации защищаемый металл или присоединяется к положительному полюсу источника тока (т. е. в качестве анода), или контактируется с металлом, имеющим более положительный потенциал. Уменьшение скорости коррозии при анодной поляризации металла конструкции имеет место только в случае перевода его в пассивное состояние. Поэтому анодная электрохимическая защита может быть эффективна для легко пассивирующихся металлов и сплавов в окислительных средах при отсутствии активных депассивирующих ионов.  [c.9]

Для успешного применения катодной защиты необходимо добиться равномерного распределения плотности тока по защищаемой поверхности. Увеличение плотности тока достигается путем приближения анодов к конструкции, а уменьшение — путем отдаления. Интенсивность, с которой изменяется плотность тока при отдалении анода, зависит от удельного сопротивления воды или грунта так, при повышении удельного со-ттротивления среды наблюдается понижение плотности тока. В ряде случаев применяется комбинированная катодная защита с внешним источником тока и протекторами.  [c.66]


Смотреть страницы где упоминается термин Защита конструкция анода : [c.299]    [c.19]    [c.196]    [c.298]    [c.303]    [c.213]   
Коррозия и защита от коррозии (1966) -- [ c.803 ]



ПОИСК



Аноды



© 2025 Mash-xxl.info Реклама на сайте