Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фронт пламени

Образование сажи в камере сгорания дизеля представляет собой объемный процесс термического разложения углеводородов топлива в условиях большого недостатка кислорода. Во фронте пламени состав смеси близок к стехиометрическому, причем локально в зоне впрыскиваемой топливной струи смесь может быть богатой, вплоть до случая, когда коэффициент избытка воздуха а О (чистые пары топлива). Диапазон а, в котором происходит образование сажи, составляет 0,33 0,7. В этой зоне происходит реакция разложения (пиролиза) молекул углеводородного топлива  [c.11]


Из факторов, влияющих на количество несгоревших углеводородов, необходимо отметить отношение поверхности камеры сгорания к ее объему, количество остаточных газов в цилиндре двигателя, степень турбулентности заряда, состав смеси, давление и температура процесса сгорания, протекание процесса догорания, после прохождения фронта пламени. Образованию углеводородов способствует также смазочное масло, попавшее в камеру сгорания, подтекание топлива из распылителя форсунки после окончания впрыска, что в то же время способствует повышенным выбросам сажи.  [c.12]

Вихревые горелочные устройства с запуском на основе самовоспламенения могут быть использованы для организации аэродинамической стабилизации фронта пламени на стержневых вдуваемых радиально интенсивно закрученных струях — огневых жгутах факела продуктов сгорания [162, 177, 191]. Одно из свойств вихревых горелок — устойчивость вихревого огневого жгута — факела продуктов сгорания (рис. 7.21, 7.22) может быть с успехом использовано в энергетике для пуска топочных устройств различных агрегатов, в том числе и для запуска камер сгорания ГТУ. В экспериментах длина огневого жгута составляла 1,5—2 м при габаритах воспламенителя 070, длине 150 мм, давлении сжатого воздуха 0,6 МПа, температуре на входе 293 К, расходе сжатого воздуха 15 г/с и коэффициенте избытка воздуха а = 2.  [c.332]

Таким образом, при взаимодействии закрученной струи со сносящим потоком реализуется сложное пространственное распределение скорости и давления. Результаты измерений и визуализации выявили различия в структуре течения и характере распространения закрученных и незакрученных струй и подтвердили целесообразность использования закрученных радиально вдуваемых стержневых струй — факела продуктов сгорания в вихревой горелке для стабилизации фронта пламени в прямоточных камерах сгорания преимущественно форсажного типа.  [c.365]

Регулирование скорости цепных реакций и управление ими в технологических процессах основано на контроле числа активных центров и на согласованности скорости цепной реакции (скорость фронта пламени) со скоростью потока газов.  [c.310]

Скорость распространения фронта пламени зависит от соста-  [c.310]

Основной принцип устойчивого процесса горения в любой горелке, использующей газообразное топливо и газообразный окислитель, — соответствие скорости истечения газов из сопла и скорости распространения фронта пламени в данной системе  [c.312]


Уточним теперь сделанное выше предположение мы будем считать, что характерные размеры задачи вел кн по сравнению с толщиной зоны горения (/3>б). При соблюдении этого условия можно выделить чисто газодинамическую задачу. При определении движения газа можно пренебречь толщиной зоны горения и рассматривать ее просто как поверхность, разделяющую продукты горения и несгоревший газ. На этой поверхности (фронт пламени) состояние газа испытывает скачок, т. е. она представляет собой своеобразную поверхность разрыва.  [c.663]

Определить распределение температуры в газе перед плоским фронтом пламени.  [c.670]

Ниже будет показано, что в адиабатических (без подвода тепла) скачках сжатия происходит увеличение энтропии газа,, а в адиабатических скачках разрежения, если бы они существовали, энтропия должна была бы уменьшаться. Этим доказывается законность существования адиабатических скачков давления и одновременно невозможность возникновения адиабатических скачков разрежения (как известно из термодинамики, в конечной замкнутой системе энтропия убывать не может). В полном соответствии с этим находится тот известный факт, что наблюдаемые иногда в действительности скачки разрежения (скачок конденсации, фронт пламени) получаются только при подводе тепла в область скачка, т. е. в таких условиях, когда и при скачке разрежения энтропия газа растет. Нужно заметить, что возникновение скачков разрежения при подводе тепла к газу отнюдь не противоречит процессу, изображенному на рис. 3.1, В самом деле, если в области пониженных давлений В за счет подвода тепла получается температура выше, чем в области 8  [c.115]

Фронт пламени представляет собой тонкий слой газа практически постоянного сечения, по обе стороны которого значения скорости движения (относительно фронта волны), температуры, давления и других параметров различны. В соответствии с этим фронт пламени можно трактовать как поверхность сильного разрыва (теплового скачка).  [c.218]

Расчет предельного скачка разрежения во фронте пламени, достигаемого при тепловом кризисе, можно произвести посредством уравнения импульсов. В случае = Мз = 1 имеем )  [c.226]

Т. е. фронт пламени и продукты горения движутся в том же направлении, что и фронт ударной волны, но только скорость частиц во фронте пламени выше, чем в продуктах горения  [c.229]

Форсажная камера турбореактивного Шлихтинга функция 365, 371 двигателя 250 Фронт пламени 218 Фруда число 79, 81, 86 Функции газодинамические 233—245,  [c.597]

Пламя бунзеновской горелки имеет внутренний светящийся конус ярко-голубого или зеленовато-голубого цвета, окруженный более бледной фиолетово-голубой оболочкой, которую называют наружным конусом. Между ними находится промежуточная зона. Внутренний конус — полый. Его поверхность образована тонкой зоной, толщиной от нескольких сотых до нескольких десятых миллиметра, в которой происходит реакция горения. Это — фронт пламени, распространяющийся в горючей смеси навстречу потоку газа. В стационарном состоянии скорость распространения фронта пламени равна скорости истечения газа из горелки. В промежуточной зоне горение не происходит. В наружном конусе идет дополнительное горение молекул окиси углерода и водорода, образовавшихся во внутреннем конусе. Необходимый для окисления кислород диффундирует из окружающей атмосферы, и горение носит диффузионный характер.  [c.252]

В стеклодувных горелках воздух, смешиваемый с газом, поступает под некоторым давлением. Это увеличивает скорость потока смеси. С ростом скорости потока ламинарное пламя переходит в турбулентное. Участки газовой струи в турбулентном пламени совершают беспорядочные вихревые перемещения, и горение сопровождается шипящим или свистящим звуком. При этом фронт пламени утолщается, внутренний конус укорачивается, округляется и может исчезнуть. При больших скоростях струи пламя может оторваться от горелки и погаснуть.  [c.252]

Тогда из (5.1.23) получим выражения для радиуса фронта пламени йл И скорости реакции в диффузионном парофазном режиме, когда скорость горения не зависит от кинетики или от Г -, 2 ,  [c.413]

Фронт пламени в газовзвесях  [c.414]

ФРОНТ ПЛАМЕНИ В ГАЗОВЗВЕСЯХ 415  [c.415]


Толщина фронта пламени определяется временем сгорания f одиночной частицы в соответствии с соотношением Vot° = Дж. Используя оценочные формулы для f при кинетическом t° пропорционально а) или диффузионном f пропорционально а ) режимах горения частиц, легко получить качественные зависимости скорости пламени от размера частиц (О. И. Лейпунский, 1960).  [c.415]

Постановка задачи о фронте пламени в газовзвеси. В системе координат, связанной с фронтом, эта задача описывается стационарным вариантом системы уравнений (5.1.1) — (5.1.10). Граничные условия, соответствующие равновесным состояниям системы до х- оо, состояние о) и после (а — ю, состояние d) фронта пламени, задаются в особых точках этих дифференциальных уравнений  [c.415]

В последние годы закрутку потока стали широко использовать для интенсификации процесса горения. При создании эффективных фронтовых устройств камер сгорания в воздушно-реактивных двигателях, для стабилизации фронта пламени в различных камерах сгорания, при создании эффективных горелочных устройств, плазмотронов с вихревой стабилизацией все большее применение находят потоки с различной интенсивностью закрутки. Это обусловливает актуальность работ, направленных на понимание и описание термогазодинамики закрученных течений как при окислительно-восстановительных экзотермических химических реакциях, так и в их отсутствие. Необходимо вооружить практику методиками экономного расчета и проектирования технических устройств с закруткой потока, а сами устройства сделать более эффективными и экологически чистыми.  [c.7]

Основные методы доводки — экспериментальные на полноразмерных камерах или их отсеках. Около 18% воздуха подводится через закручивающее устройство, лопатки которого установлены под углом примерно 70° относительно вектора осевой составляющей скорости основного потока. В первичной зоне под действием центробежных сил образуется центральная тороидальная зона обратных токов, ифаюшая важную роль в организации процесса смесеобразования и стабилизации фронта пламени.  [c.32]

Возможность стабилизации фронта пламени на радиально в1дуваемых интенсивно закрученных стержневых струях  [c.359]

Поперечный вдув струй в сносящий поток представляет практический интерес в связи с разнообразными приложениями, начиная от разбавления продуктов сгорания воздухом в камерах сгорания (КС) газовых турбин и заканчивая аэродинамикой реактивной струи при переходе самолета вертикального или укороченного взлета и посадки с режима подъема на крейсерский режим. При вдуве струи в сносящий поток наблюдается сложная картина течения [1, 87]. Поперечное сечение струи принимает почкообразную форму и состоит из двух вихрей, закрученных в противоположные стороны. Основной поток, обтекая струю, формирует зону обратных токов. Возникающие зоны возвратных течений могут быть использованы для стабилизации фронта пламени в прямоточных КС авиационных двигателей. Генератором стабилизирующей струи служит вихревой воспламенитель [141] (см. п.7.1). Преимущества этих систем — высокая надежность запуска и устойчивая работа в щироком диапазоне изменения физических и климатических условий. В этом случае стабилизация осуществляется на высокотемпературном факеле — закрученном потоке продуктов сгорания, истекающих из сопла-диафрагмы с трансзвуковой скоростью, что может быть использовано для воспламенения сносящего потока топливо-воздушной смеси. При  [c.359]

В работах [80, 86] экспериментально исследовалось влияние размера капель на распространение пламени. В обеих работах сообщалось, что взвесь, содержащая капли размером менее 10 мк, ведет себя как пар. Горение отдельных частиц отчетливо заметно, когда их размеры превышают 40 мк. Подтвержден факт возрастания Яу/а с уменьшением я [836] при этом наблюдалось падение скорости горения [61]. В работе [445] изучалось влияние колебаний внешнего давления на скорость горения, а в работе [5421 рассмотрена устойчивость фронта пламени дву.хкомпонентной горючей с.меси. Попытка обобщения данны.х по скорости горения содержится в работе [605], а в работе [133] установлены закономерности влияния горения на коэффициент сопротивления капель и частиц.  [c.113]

Наличие определенной нормальной скорости распространения пламени, не зависящей от скоростей движения самого газа, приводит к установлению определенной формы фронта пламени при стационарном горении в движущемся потоке газа. Примером является горение газа, вытекающего из конца трубки (отверстия горелки). Если о есть средняя (по сечению трубки) скорость газа, то очевидно, что 0i5i = uS, где 5 — площадь поперечного сечения трубки, а Si — полная площадь поверхности фронта пламени.  [c.665]

Возникает вопрос о границах устойчивости описанного режима по отношению к малым возмущениям — условиях реального его существования. Благодаря малости скорости движения газа по сравнению со скоростью звука, при исследовании устойчивости фронта пламени можно рассматривать газ как несжимаемую идеальную (иевязкую) среду, причем нормальная скорость распространения пламени предполагается заданной постоянной величиной. Такое исследование приводит к результату  [c.665]

Исследооать устойчивость плоского фронта пламени при медленном горении по отношению к малым возмущениям.  [c.668]

Решение. Рассматриваем плоскость разрыва (фронт пламени) в системе координат, в которой он покоится (и совпадает с плоскостью yz) ие-возмущенная скорость газа направлена в положительном направлении оси х. На движеине с постоянными скоростями Vi, V2 (по обе стороны разрыва) накладываем возмущение, периодическое по времени и по координате у. Из уравнений движения  [c.668]

Используем полученные уравнения для анализа распространения горения в режиме фронта пламени, когда оно происходит за счет прогрева (благодаря молекулярной или лучистой теилоиро-водиости среды) впереди лежащих холодных слоев горячими слоями, в которых теплота горения уже выделилась. Такой прогрев вызывает воспламенение среды перед фронтом пламени и распрострапение последнего.  [c.414]


Наличие в уравнениях для фронта пламени членов с S TJdx и й /с,(й)/йх описывающих процессы переноса, повышает их порядок. При этом указанным граничным условиям можно удовлетворить только при одно.м значении скорости (собстнепное значение задачи), которое определяется из решения задачи о структуре волны. Это отличает данную задачу от задачи о структуре ударной волны в газовзвеси, решение которой существует при любом сверхзвуковом значении скорости волны.  [c.416]


Смотреть страницы где упоминается термин Фронт пламени : [c.18]    [c.315]    [c.351]    [c.354]    [c.530]    [c.311]    [c.667]    [c.670]    [c.229]    [c.229]    [c.231]    [c.411]    [c.415]    [c.415]    [c.417]    [c.417]    [c.417]   
Прикладная газовая динамика. Ч.1 (1991) -- [ c.218 ]

Физическая газодинамика реагирующих сред (1985) -- [ c.298 ]

Теплотехнический справочник Том 2 (1976) -- [ c.342 , c.343 , c.345 ]

Теплотехнический справочник том 2 издание 2 (1976) -- [ c.342 , c.343 , c.345 ]

Температура и её измерение (1960) -- [ c.341 ]

Справочник проектировщика динамический расчет сооружений на специальные воздействия (1981) -- [ c.29 ]

Механика сплошных сред Изд.2 (1954) -- [ c.677 ]



ПОИСК



Возможность стабилизации фронта пламени на радиально вдуваемых интенсивно закрученных стержневых струях

Время образования нестационарного фронта пламени

Пламя

Постановка задачи о фронте пламени в газовзвесп

Распространение фронта пламени

Распространение фронта пламени в пиротехнической смеси

Распространение фронта пламени в полубесконечном цилиндре

Расчет скорости сгорания по скорости фронта пламени (двигатели с воспламенением от электрической искры)

Структура фронта пламени

Устойчивость нормального фронта пламени

Фронт

Фронт пламени в газовзвесях

Фронт пламени устой чи ость

Элементарная теория фронта пламени



© 2025 Mash-xxl.info Реклама на сайте