Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы — Коэффициенты линейного расширения 73 — Коэффициенты

В результате замены никеля кобальтом получается сплав, называемый коваром , содержащий 29% Ni, 18% Со. У такого сплава коэффициент линейного расширения а=5-10- .  [c.539]

Сплав Коэффициент линейного расширения а-19, 1/ С, в интервале температур, °С  [c.215]

Сплавы — Коэффициенты линейного расширения 705 Сплавы алюминиевые — Обработка 319, 346  [c.802]

Сплавы — Коэффициент линейного расширения 17  [c.729]


Метод предполагает применение схемной компенсации температурного приращения сопротивления тензорезистора, учитывая, что рабочие температуры существенно превышают критическую для данного типа сплава. При этом производится тщательный подбор в пары тензорезисторов (рабочего — компенсационного) по номинальным сопротивлениям, температурным характеристикам, дрейфу действительного и начального сопротивления. Для оценки и учета погрешности из-за неполной температурной компенсации, обусловленной разностью коэффициентов линейного расширения, используются специальные тензорезисторы-свидетели , устанавливаемые в необходимом количестве на натурном объекте на свободно деформирующихся пластинках. Таким образом, в процессе измерений непосредственно получается температурная поправка, которая программным путем аппроксимируется соответствующей зависимостью и автоматически вводится при обработке в результат измерений.  [c.66]

Марка стали, сплава Коэффициент линейного расширения а 10", (град. ), при температуре, °С  [c.571]

Сплав Коэффициент линейного расширения а-10 при 20—200° С, 1/°С Коэффициент теплопроводности, кал/(смс С) Удельная электро- проводность а-10, OM-1-MM-1-10-4  [c.513]

Сплавы — Коэффициенты линейного расширения 73 — Коэффициенты теплопроводности 83  [c.792]

Вакуумная керамика представляет собой группу радиотехнических керамических материалов с большой плотностью (вакуум-плотностью), хорошими термомеханическими свойствами и низкими значениями диэлектрических потерь в широком интервале температур и частот (табл. II. 45). Свойства вакуумной керамики, применяемой внутри вакуумных приборов, определяются ГОСТ 5458-57, класс VI (см. табл. II. 47). Вакуумная керамика должна давать вакуум-плотные спаи с медью, железом и их сплавами. Коэффициент линейного расширения керамики в интервале температур 20—90° С должен составлять для спаев с медью и ее сплавами (13 Ч- 15) 10 , для спаев с железом и его сплавами (10 -г 11) 10 , для спаев с коваром (6 7) 10 . Однако полного совпадения коэффициента линейного расширения металла и керамики не всегда удается достигнуть.  [c.299]

Широкое применение находит железоникелевый сплав, содержащий около 48 /о Ni марки Н48, называемый платинитом. У этого сплава коэффициент линейного расширения имеет такую же величину (а 9-10 ), как у платины и стекла. До появления этого сплава в качестве проводников для вводов в стеклянные приборы применяли платину. Если спай платинита со стеклом подвергается нагреву, то в результате одинакового расширения обоих материалов в стекле не возникает напряжений. Коэффициент линейного расширения у платинита изменяется незначительно до 400° С, а при более высокой температуре сильно увеличивается.  [c.356]


Сплавы — Коэффициент линейного расширения 181  [c.599]

У железоникелевых сплавов коэффициент линейного расширения при прибавлении никеля изменяется по сложной зависимости, как это представлено кривой на фиг. 346 Из этой диаграммы мы видим, что у железа а =  [c.367]

В приборостроении в ряде случаев требуются сплавы с самыми разнообразными свойствами, например сплавы с коэффициентом линейного расширения, равным коэффициенту линейного расширения стекла, или с коэффициентом, равным нулю, а также с весьма большим коэффициентом и т. д. Чтобы удовлетворить этим требованиям, для каждого конкретного случая применения изготавливают сплавы строго определенного состава. Их, как и магнитные и электротехнические сплавы, называют часто прецизионными сплавами.  [c.536]

Существуют, однако, две анормальные системы Fe—Ni и Fe—Pt, в которых изменение коэффициента линейного расширения сплавов не подчиняется общим правилам. У железоникелевых сплавов коэффициент линейного расширения при добавлении никеля изменяется по сложной зависимости (рис. 397). Из этой диаграммы мы видим, что у железа а=11,6-10- . Сплав с 25% Ni имеет почти в два раза больший коэффициент линейного расширения (а = 20-10 ). Сплав с 36%Ni имеет в восемь раз меньший коэффициент линейного расширения (а= 1,5-10 ).  [c.537]

Температура, при которой коэффициент линейного расширения сплава Fe —Ni резко возрастает, совпадает с точкой Кюри этого сплава.  [c.538]

Сплав с 48% Ni имеет коэффициент линейного расширения, равный 9-10- , т. е. такой же, как у стекла и платины (см. табл. 101). Этот сплав получил название платинита, и его применяют для пайки металла со стеклом.  [c.539]

В приборостроении применяют сплавы с особыми тепловыми свойствами на основе Ре—N1 (ГОСТ 14080—68). Значительное количество N1 сообщает нм аустенитную структуру и обеспечивает получение низкого коэффициента линейного расширения (рис. 15.18).  [c.285]

Химический состав, свойства и назначение сплавов с заданным коэффициентом линейного расширения приведены в табл. 15.21.  [c.285]

Термобиметаллы (ГОСТ 10533—63)—это спаянные пластины двух различных металлов или сплавов с резко разнородными (значительным и незначительным) коэффициентами линейного расширения. Они используются при изготовлении термобиметаллических элементов электрических аппаратов дистанционного управления (реле и регуляторов).  [c.285]

Рис. 15.18. Диаграммы зависимости коэффициента линейного расширения железоникелевых сплавов Рис. 15.18. Диаграммы зависимости <a href="/info/31262">коэффициента линейного расширения</a> железоникелевых сплавов
Сплавы на основе А1 обладают низким коэффициентом трения и высокой износостойкостью, однако по технологичности уступают оловянным и свинцовым баббитам. Высокий коэффициент линейного расширения баббитов на основе А1 требует больших зазоров в узлах подшипников трения — скольжения.  [c.310]

Алюминиевые сплавы противостоят коррозии в сухой атмосфере, устойчивы против действия щелочей и слабых растворов кислот, но подвержены коррозии в условиях влажного (особенно морского) воздуха неустойчивы против действия сильных кислот, мягки НВ 60—130). В интервале 0-100°С коэффициент линейного расширения а = (20-1-26)10" .. Модуль упругости Е = 7000 7500 кгс/мм .  [c.180]

Магниевые сплавы. Магниевые сплавы состоят из Мя (90% и вьпне) И легирующих элементов (А1, Мп, 2п, 2г и др.). Они обладают малой плотностью (1,8 кг/дм ), низким значением модуля упругости ( = = 4200 -н 4500 кгс/мм ) и малой твердостью НВ 60—80). Коэффициент линейного расширения очень высок а = (27-1-30)-10 (в интервале 0 —100°С), теплопроводность 60 — 70 кал/(м-ч-°С).  [c.183]

Упругие эле.менты часто применяют для поглощения термических деформаций при установке на валу нескольких деталей, выполненных из сплавов с повышенным коэффициентом линейного расширения (например, роторов многоступенчатых аксиальных компрессоров). Для фиксации и затяжки таких деталей требуется значительная осевая сила. Поэто.му упругие элементы в данном случае выполняют в виде набора многочисленных прочных и относительно жестких элементов (рис. 238), в сумме дающих необходимую упругость. Методика расчета упругих элементов приведена в разделе 10,  [c.366]


Примером может служить конструкция фиксирующего подшипника скольжения (рис, 250, а). Пусть вал изготовлен из стали с коэффициентом линейного расширения 1, а корпус подшипника — из сплава с 2. Рабочие температуры соответственно равны П и Гг.  [c.377]

Спирт этиловый — см. Эгилиаый спирт Сплавы — Коэффициент линейного расширения 15  [c.550]

Марка сплава Удельный вес в Г/см Коэффициент линейного расширения а-10 в интервале температур в С Коэффициент теплопроводности X п кал/см.-секХ X град Удельная тепл оемкость при 25 С вккал/кГ -град Удельная электропроводность в ом -мм Х Ж10" Коэффициент электропроводности в интервале температур 20—100 С  [c.285]

При очень жестких температурных условиях работы пр] Соров, в особенности если олравы оптических деталей т еют больцьче размры, применяют титановые сплавь , коэффициенты линейного расширения которых близки к коэффициентам линейного расширения стекла.  [c.267]

Широкое применение находит железноникелевый сплав, содержащий около 48% N1 марки Н48, называемый платинит. У этого сплава коэффициент линейного расширения имеет такую же величину (а 9-10 ), как у платины и стекла. До появления этого сплава в качестве проводников для вводов в стеклянные приборы применяли платину. Если спай платинита со стеклом подвергается нагреву, то в результате одинакового расширения обоих материалов в стекле 266  [c.266]

Поршни карбюраторных двигателей и дпзелей изготовляют пз специальных алюминиевых сплавов, коэффициент линейного расширения которых колеблется в зависимости от их химического состава в пределах (16 -т- 21) 10 1/ С, в то время как этот коэффициент у стальной плп чугунной гильзы цплиндра состав.ляет (11 12) < хЮ в 1/ С. От разницы коэффициентов линейного расшпренпя мате-риа.лов поршня и ги.льзы п разности пх температур зависит величина зазора между ними.  [c.417]

У титановых сплавов коэффициент линейного расширения ( 8,4-10 ° 1/К) почти в 3 раза меньше, чем у алюминиевых сплавов, и примерно в 2 раза меньнге, чем у сталей. В то же время модуль упругости титана примерно в 2 раза меньше, чем у стали, и только в полтора раза больше, чем у алюминия. Следовательно, температурные напряжения в титановой кон струкции будут ме1плне, чем в аналогичной стальной и алюми ниевой.  [c.216]

В связи с большой величиной коэффициента линейного расширения ы низки.м модулем упругости сплав имеет повышенную склонность к короблению. Поэтому 1Шобходимо прибегать к жесткому закреплению листов с помощью грузов, а такгке ннев-мо- или гидравлических прижимов на специальных стендах для сварки полотнищ и секций из этих сплавов. Ввиду высокой теплопроводности алюминия приспособления следует изготовлять из материалов с низкой теплопроводностью (легированР1ые стали и т. п.).  [c.354]

Аустенитные жаропрочные стали обладают рядом общих свойств — высокой жаропрочностью и окалиностойкостьк>, большой пластичностью, хорошей свариваемостью, большим коэффициентом линейного расширения. Тем не менее по сравнению с перлитными и мартенситными сталями они менее технологичны обработка давлением резанием этих сплавов затруднена сварной шов обладает повышенной хрупкостью полученное вследствие перегрева крупнозернистое строение не может быть исправлено термической обработкой, так как в этих сталях отсутствует фазовая перекристаллизация. В интервале 550—600°С эти стали часто охрупчиваются из-за выделения по границам зерна различных фаз.  [c.470]

Рис. 397. Коэффициент линейного расширении сплавов Fe—Nl (Шевенар) Рис. 397. <a href="/info/77539">Коэффициент линейного расширении сплавов</a> Fe—Nl (Шевенар)
Сплав с 36% Ni называется инваром (неизменный), и его можно считать практически нерасширяюшимся. Этот сплав применяют во многих приборах для деталей, размеры которых не должны изменяться с изменением температуры. Следует иметь в виду, что малый коэффициент линейного расширения инвара сохраняется лишь в интервале от —80 до -f-100° выше и ни-х<е этого интервала коэффициент расширения инвара резко  [c.538]

Сплав с 42% Ni отличается тем, что имеет постоянный коэффициент линейного расширения (около 7,5Х Х10" ) в интервале от 20 до 200°С вне этого интервала температур его коэффициент возрастает, т. е. сплав расширяется более интенсивно (рис. 398). Другими словами, для сплавов системы Fe—Ni существует интервал температур, в пределах которого коэффициент линейного расширения остается постоянным. Верхняя чого асш р°ен спГа1ов Те- тсмпература ЭТОГО интервалз тем ВЫ-  [c.538]

До 1я поршневых сплавов важно иметь максимальную теплопроводность, минимальные коэффициент трения и плотность. Сплавы АК2 и А1<4 имеют плотность 2,80 г/см коэффициент линейного расширения при 20—400°С равен 22. Теплопроводность сплавов АК2 и АК4 1,55 и 1,68 Дж/(см-с-°С) соот-ветствеи ю.  [c.595]

Алюминиевые подшипниковые сплавы обладают высокими свойствами (низким коэффициентом трения и высокой износостойкостью). Но по технологичности они уступают обычным баббитам. Их более высокая твердость является скорее недостатком, чем преимуществом сплава, так как требует обработки цапф и вкладыша повышенной чистоты, а шейка вала должна быть твердой. Несоблюдение этих условий вызовет ускоренный износ. Высокий коэффициент линейного расширения алюминиевых баббитов требует более тшательной сборки с большими зазорами.  [c.623]

Ре значительно снижает коэффициент линейного расширения сплавов. На основе системы Ре—N1 имеютея сплавы с нулевым коэффициентом линейного расширения  [c.285]


Одна составляющая термопары имеет небольшой коэффициент линейного расширения и изготовляется из никелевого сплава инвар-36Н (коэффициент линейного расширения а = 1,5-10 ). Другая составляющая термопары обладает значительным коэффициентом линейного расширения и изготовляется из сплава Ре—N1 (медноникелевого сплава МНМц40-1,5) или из твердой Си (марки М4), латуни, а также немагнитной стали. Коэффициент линейного расширения этих материалов а = (10-Р 16)10 .  [c.288]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

При сопряжении деталей из легких сплавов со стальными деталяхга следует утатывать различие их коэффициентов линейного расширения. В неподвижных сопряжениях, когда расширение деталей, выполненных из легких сплавов, ограничено смежными стальными деталями, могут возникнуть высокие термические напряжения. В подвижных сочленениях, где охватываемая деталь выполнена из легкого сплава, а охватывающая из стали, например цилиндр двигателя внутреннего сгорания с алюминиевым поршнем, следует предусматривать увеличенные зазоры во избежание защемления поршня при повышенных температурах.  [c.186]

Сплавы а + р поддаются гтермомеханической обработке (пластическая деформация на 40-60% при 850°С, закалка и старение при 500—550°С), в результате которой дополнительно увеличивается прочность на 20 — 30% при сохранении и даже повышении пластичности. Плотность- титановых сплавов 4,5.кг/дм , модуль нормальной упругости 11500 — 12000 кгс/мм , модуль сдвига 4000 - 4300 кгс/мм , коэффициент линейного расширения в интервале- 0—100°С равен (8 10)-10 С  [c.187]

Инвар (36Н) представляет сд ой железоникелевый сплав (36% N1, остальное Ге). Коэффициент линейного расширения в интервале температур от 0 до 100°С равен (О -г 1,5). резко повышается при (> 200°С (рис. 237). Еще более низким коэффициентом ливеДиого расширения [а = (0 0,5)-10 1/°С в интервале О-ЮО С] обладает суперинвар Н30К4Д  [c.363]


Смотреть страницы где упоминается термин Сплавы — Коэффициенты линейного расширения 73 — Коэффициенты : [c.999]    [c.272]    [c.311]    [c.50]    [c.390]    [c.100]    [c.100]   
Краткий справочник машиностроителя (1966) -- [ c.0 ]



ПОИСК



81, 82 — Коэффициенты линейного расширения 74 — Коэффициенты

Алюминий и алюминиевые сплавы v Теплоемкость, коэффициенты теплопроводности я линейного расширения алюминия некоторых марок

Благородные металлы и соединения на их основе Теплоемкость, коэффициенты теплопроводности и линейного расширения металлов платиновой группы и их сплавов

Закономерности изменения коэффициента линейного расширения и механических свойств от химического состава и метода приготовления сплавов

Кобальт и его сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения кобальта

Коэффициент аэродинамический линейного расширения сплавов

Коэффициент давления газов линейного расширения металлов и сплавов

Коэффициент линейного расширения

Коэффициент линейного расширения алюминия линейного расширения сплавов металлокерамических

Коэффициент линейного расширения для металлов и сплавов

Коэффициент линейный

Коэффициент температурный линейного расширения для металлов и сплавов электровакуумного производства

Коэффициенты линейного расширения для некоторых металлов, сплавов и материалов

Коэффициенты расширения

Коэффициенты теплопроводности и линейного расширений зарубежных алюминиевых сплавов

Коэффициенты теплопроводности и линейного расширения кобальтовых сплавов

Коэффициенты теплопроводности и линейного расширения конструкционных никелевых сплавов

Коэффициенты теплопроводности и линейного расширения сплавов системы А1—Si—Си

Коэффициенты теплопроводности и линейного расширения термоэлектродных сплавов

Линейное расширение

Магний и магниевые сплавы Теплоемкость и коэффициент линейного расширения магния

Медь и медные сплавы Теплоемкость, коэффициенты теплопроводности н линейного расширения меди некоторых марок

Никель и никелевые сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения никеля некоторых марок

Прутки и листы из перцизионных сплавов с заданным температурным коэффициентом линейного расширения Технические условия

Радиоактивные металлы и их сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения урана и его сплавов

Редкие элементы и их сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения рассеянных элементов

СПЛАВЫ С ЗАДАННЫМ КОЭФФИЦИЕНТОМ ЛИНЕЙНОГО РАСШИРЕНИЯ (А. С. Лилеев)

СТАЛИ И СПЛАВЫ С ОСОБЫМИ МАГНИТНЫМИ СВОЙСТВАМИ И СПЛАВЫ С ЗАДАННЫМ КОЭФФИЦИЕНТОМ ЛИНЕЙНОГО РАСШИРЕНИЯ

Свинец и свинцовые сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения свинца

Свойства титана и титановых сплавов Теплоемкость, коэффициенты теплопроводности ц линейного расширения титана некоторых марок

Спеченные алюминиевые сплавы с низким коэффициентом линейного расширения

Сплавы Коэффициент линейного расширени

Сплавы Коэффициент линейного расширени

Сплавы прецизионные с заданным температурным коэффициентом линейного расширения

Сплавы с заданным коэффициентом линейного расширения

Сплавы с заданным коэффициентом линейного расширения немагнитные

Сплавы с заданным температурным коэффициентом линейного расширения

Сплавы с заданным температурным коэффициентом линейного расширения Виды поставляемого полуфабриката

Сплавы с заданным температурным коэффициентом линейного расширения для приборов и радиоэлектронной аппаратуры

Сплавы с малым температурным коэффициентом линейного расширения

Сплавы с низким коэффициентом линейного расширения

Сплавы с регламентируемым температурным коэффициентом линейного расширения

Сплавы системы А1—Si с низким коэффициентом линейного расширения

Сплавы со средним коэффициентом линейного расширения

Сплавы ферромагнитные с минимальным коэффициентом линейного расширени

Сплавы — Коэффициент линейного расширения

Сплавы — Коэффициент линейного расширения

Сплавы — Коэффициент расширения

Сплавы — Коэффициенты линейного

Сплавы — Коэффициенты линейного расширения — Таблиц

Средний коэффициент линейного расширения -зарубежных кобальтовых сплавов

Таблица П-10. Температурные коэффициенты линейного расширения а, 10-вС-1, для некоторых металлов и сплавов

Температурные коэффициенты линейного расширения сплавов систеКоэффициенты теплопроводности и линейного расширения спеченных порошковых материалов на основе алюминия

Температурный коэффициент линейного расширения а некоторых сплавов

Температурный коэффициент линейного расширения свинцово-сурьмянистых сплавов при

Теплоемкость, коэффициенты теплопроводности и линейного расширения алюминиевых сплавов малолегированных и не упрочненных термической обработкой

Теплоемкость, коэффициенты теплопроводности и линейного расширения горячекатаных жаростойких сплавов

Теплоемкость, коэффициенты теплопроводности и линейного расширения жаростойких и жаропрочных сплавов на хромоникелевой основе

Теплоемкость, коэффициенты теплопроводности и линейного расширения зарубежных никелевых сплавов

Теплоемкость, коэффициенты теплопроводности и линейного расширения легких элементов и сплавов на их основе

Теплоемкость, коэффициенты теплопроводности и линейного расширения медноникелевых сплавов

Теплоемкость, коэффициенты теплопроводности и линейного расширения однофазных а-сплавов

Теплоемкость, коэффициенты теплопроводности и линейного расширения сплавов для спаев с неорганическими диэлектриками

Теплоемкость, коэффициенты теплопроводности и линейного расширения сплавов с минимальным тепловым расширением

Теплоемкость, коэффициенты теплопроводности и линейного расширения сплавов системы

Теплоемкость, коэффициенты теплопроводности и линейного расширения тугоплавких и легирующих элементов и сплавов на их основе

Теплоемкость, коэффициенты теплопроводности н линейного расширения двухфазных (ар)-сплавов

Теплоемкость, коэффициенты теплопроводности н линейного расширения зарубежных сплавов на медной основе

Теплоемкость, коэффициенты теплопроводности н линейного расширения некоторых зарубежных титановых сплавов

Технологические особенности изготовления порошков и полуфабрикатов из алюминиевых сплавов с низким коэффициентом линейного расширения

Хром и его сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения хрома

Циик и его сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения цинка

Щелочные металлы и их сплавы, марганец и некоторые элемеи-, ты II группы Теплоемкость, коэффициенты теплопроводности и линейного расширения щелочных металлов и марганца



© 2025 Mash-xxl.info Реклама на сайте