Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температурный коэффициент линейного расширения а некоторых сплавов

Температурные коэффициенты линейного расширения некоторых сплавов представлены в табл. 68.  [c.564]

Сплавы с заданным температурным коэффициентом линейного расширения. Некоторые детали приборов должны обладать постоянством размеров при изменении температуры. Поэтому их температурный коэффициент расширения должен быть близок к нулю. Таким свойством обладает сплав инвар 36Н, содержащий 36 % никеля и 64 % железа. Он имеет также хорошие механические, технологические и антикоррозионные свойства. Низкий коэффициент температурного расширения сохраняется у инвара в диапазоне от -100 до 100 °С. Еще более низ-  [c.185]


В табл. 3 приведены приближенные значения температурных коэффициентов линейного расширения некоторых фаз, имеющихся в рассматриваемых нами эвтектических жаропрочных сплавах.  [c.154]

Несмотря на возможность получения железоникелевых сплавов с различными коэффициентами линейного расширения, не все их можно применять для соединения с диэлектриками. Для соединения с тугоплавкими стеклами [а р = (3,5-f-5,0)-10" 1/град] железоникелевые сплавы-непригодны потому, что у них коэффициенты линейного расширения низки в более узком интервале температур, чем у стекол. Добавление некоторых элементов, например кобальта и меди, повышает температурные коэффициенты линейного расширения н улучшает качество окисной пленки, при этом смачиваемость сплава стеклом значительно улучшается. При пайке образуется прочный герметичный спай стекла и металла. К рассмотренной группе сплавов относится ковар и другие сплавы. Некоторые свойства этих сплавов приведены в табл. 40.  [c.273]

Температурный коэффициент линейного расширения а некоторых сплавов  [c.68]

Температурный коэффициент линейного расширения (а) некоторых сплавов приведен в табл. 66.  [c.564]

Для некоторых композиционных материалов с хрупкой матрицей из литого жаропрочного сплава наблюдается растрескивание матрицы при термоциклировании, воспроизводящем условия работы авиационного двигателя. Необходимы дальнейшие исследования для изучения этой проблемы. Матрица должна обладать достаточно высокой пластичностью, чтобы оказывать сопротивление разрушению в результате малоцикловой усталости, вызванной несоответствием температурных коэффициентов линейного расширения матрицы и волокна. Этот вид разрушения редко наблюдается в лопатках, изготовляемых из композиций жара-  [c.274]

По назначению пружинные стали можно разделить на стали общего назначения, предназначенные для изготовления изделий, обладающих высоким сопротивлением малым пластическим деформациям (предел упругости) и релаксационной стойкостью, при достаточной пластичности и вязкости, а для пружин, работающих при циклических нагрузках, и высоким сопротивлением усталости Рабочая температура таких пружин обычно не превышает J00—120 °С Стали специального назначения, предназначенные для изготовления изделий, к которым кроме необходимого высокого комплекса механических свойств (предел упругости, сопротивление релаксации напряжений, пластичность и др ), предъявляют требования по обеспе чению специальных физико химических свойств (коррозионной стойкости, немагнитности, теплостойкости и др ) Температуры эксплуатации таких пружин находятся в интервале 200—400 °С и выше В некоторых случаях необходимы пружины для работы при отрицательных температурах Имеются высоколегированные пружинные сплавы с заданными коэффициентами линейного расширения, независимым от температуры модулем упругости (в определенном температурном интервале), с высоким или низким модулем упругости и др  [c.203]


Сплавы прецизионные магнитно-мягкие — это ферромагнитные сплавы, характеризующиеся узкой петлей гистерезиса, они обладают высокой магнитной проницаемостью и малой коэрцитивной силой. Условно считается, что она не превышает 1000—1200 А/м. Сплавы используют в качестве сердечников магнитопроводов, а также магнитных экранов аппаратуры радиосвязи, радиолокации, автоматики и др. По основным магнитным, электрическим, механическим свойствам прецизионные магнитно-мягкие сплавы подразделяют на 12 фупп [195] сплавы с наивысшей магнитной проницаемостью в слабых полях сплавы с высокой магнитной проницаемостью и повышенным удельным электрическим сопротивлением сплавы с высокой магнитной проницаемостью и повышенной индукцией насыщения сплавы с прямоугольной петлей гистерезиса сплавы с высокой индукцией насыщения сплавы с низкой остаточной индукцией сплавы с повышенной деформационной стабильностью и износостойкостью сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) сплавы с высокой коррозионной стойкостью сплавы с высокой магнитострик-цией термомагнитные сплавы и материалы сплавы для работы на сверхвысоких частотах. Магнитные свойства магнитно-мягких сплавов определяются химическим составом, структурой и текстурой сплава после окончательной термической обработки. Некоторые свойства (намагниченность насыщения, температура Кюри) сравнительно слабо изменяются при небольших изменениях состава и обычно не зависят от условий изготовления и термической обработки. Другие характеристики, такие как проницаемость, коэрцитивная сила, потери на гистерезис, сильно зависят от этих факторов. Поэтому нормируемые ГОСТом и техническими условиями свойства  [c.548]

Классический инвар — сплав железа и 36% N1 имеет относительный температурный коэффициент линейного расширения, почти равный нулю при температуре до 120° С. Суперинвар, дополнительно легированный 5% Со, —это однофазный, пластичный, прочный и коррозионноустойчивый сплав. Некоторые свойства сплавов инварного класса приведены в табл. 39. Эти сплавы склонны к мартенситному превращению, что нарушает их аномальные свойства. Для предотвращения мартенситного превращения (получения устойчивой у-фазы) сплавы подвергают глубокому охлаждению (до 80° С) и затем последующему нагреву до 600° С, скорость нагрева и охлаждения должна быть медленной.  [c.272]

Химическое меднение. Химическое меднение является одним из немногих способов получения композиционных материалов на основе меди и его сплавов, армированных углеродным волокном. Введение углеродных волокон в медные сплавы целесообразно в некоторых случаях, когда требуется материал с высокими элек-тро- и теплопроводностью, близкими к соответствующим характеристикам меди, но более прочный, с более низким температурным коэффициентом линейного расширения. Кроме того, он может служить и хорошим материалом для высокопрочных, самосмазываю-щихся ПОДЦ1ИИНИКОВ трения. Часто химическое меднение исполь-зуют для улучшения смачиваемости углеродных волокон или нитевидных кристаллов в процессе изготовления композиционных материалов на основе алюминиевых сплавов методом пропитки жидким расплавом, либо в качестве подслоя на этих унрочните-лях, образующего плавящуюся эвтектику в контакте с металлом матрицы, используемым в виде тонких фольг при горячем прессовании.  [c.186]

Сплавы системы Fe - Ni помимо низких значений температурного коэффициента линейного расширения при некоторых концентрациях никеля обладают еще одним замечательным свойством — малым температурным коэффициентом модуля нормальной упругости. Во всех твердых телах, в том числе и металлах, модуль упругости при нагреве уменьшается в связи с уменьшением энергии межатомных связей. В некоторых сплавах системы Fe - Ni, называемых элинварными, наблюдается аномалия в изменении модуля упругости при нагреве, который либо растет, либо изменяется очень незначительно.  [c.564]


Выбор и общая характеристика сплавов. Сплавами с заданным температурным коэффициентом линейного расширения (ТКЛР) называются сплавы, сохраняющие в некотором интервале температур практически постоянными свой объем, т. е. имеющие малый коэффициент температурного линейного расширения. Такое аномальное поведение сплавов объясняется тем, что при изменении температуры в них возникают магнитные превращения, сопровождающиеся объемными изменениями. компенсирующими термическое расширение, обусловленное тепловыми колебаниями атомов.  [c.369]

При правильном конструировании сварного узла температурные коэффициенты линейного расширения (ТКЛР) стекла, керамики и металла должны быть максимально согласованы. В противном случае напряжения, возникающие при изменении температуры, могут привести к разрушению сварного соединения. Наиболее широко для соединения со стеклом и керамикой используют железоникелевые сплавы, ковар, нержавеющую сталь, а из чистых металлов Си, N1, Т1, А1, Мо, Wl и некоторые другие. Основные свойства металлов, которые могут быть использованы при разработке металлокерамических и металлостекляиных узлов, приведены в табл. 36.6.  [c.478]

Инварные аморфные сплавы. Некоторые МС на основе железа( 93ЖХР-А, 96ЖР-А) в определенных температурных интервалах имеют низкий коэффициент линейного расширения [а<3 С 10 " ( С) Ч-При комнатной температуре их свойства близки к свойствам пол икр металлического сплава 36Н. Очи сохраняют низкое значение а Вплоть до температуры 250—300 °С, в То время как сплав 36Н — до 100 °С,  [c.585]


Смотреть страницы где упоминается термин Температурный коэффициент линейного расширения а некоторых сплавов : [c.164]    [c.72]   
Смотреть главы в:

Краткий справочник технолога-машиностроителя Изд.2  -> Температурный коэффициент линейного расширения а некоторых сплавов



ПОИСК



81, 82 — Коэффициенты линейного расширения 74 — Коэффициенты

Коэффициент линейного расширения

Коэффициент линейный

Коэффициент температурного расширени

Коэффициент температурного расширения

Коэффициент температурный

Коэффициент температурный линейного

Коэффициенты расширения

Линейное расширение

Сплавы Коэффициент линейного расширени

Сплавы — Коэффициент линейного расширения

Сплавы — Коэффициент расширения

Сплавы — Коэффициенты линейного

Сплавы — Коэффициенты линейного расширения 73 — Коэффициенты

Таблица П-10. Температурные коэффициенты линейного расширения а, 10-вС-1, для некоторых металлов и сплавов

Температурное расширение

Температурный коэффициент линейного расширения 81,------объ



© 2025 Mash-xxl.info Реклама на сайте