Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия механических напряжений

Для исследования влияния механических напряжений на коррозию металлов применяют различные методы испытания образцов металлов в напряженном состоянии.  [c.450]

Важно подчеркнуть, что достижение высокой точности у технических термометров сопротивления требует применения тех же принципов, которые лежат в основе конструирования самых точных эталонных термометров. Дополнительные требования, предъявляемые к техническим термометрам (прочность, невысокая стоимость, иногда также малые размеры), должны удовлетворяться без чрезмерного снижения требований к точности измерений, которая зависит от качества теплового контакта с объектом измерения, отсутствия механических напряжений на чувствительном элементе, защиты от коррозии, возможности периодической поверки термометра.  [c.231]


Сплав МА2-1 системы Mg—А1—Zn обладает достаточно высокими механическими свойствами, хорошей технологической пластичностью и свариваемостью. Однако склонен к коррозии 1юд напряжением. Сплав МА2-1 поддается всем видам листовой штамповки и легко прокатывается.  [c.341]

Фреттинг-коррозия — еще одно следствие механических напряжений, которое может приводить к усталостному или коррозионно-усталостному разрушению металла. Это разрушение происходит на поверхности раздела двух контактирующих друг с другом тел, причем оба (или одно из них) металлические и слегка скользят друг относительно друга. Скольжение обычно имеет колебательный характер, например при вибрации. Продолжительное скольжение, когда один ролик вращается несколько быстрее контактирующего с ним, приводит к аналогичному разрушению. К тому же типу разрушения относятся коррозионный износ и окисление при трении.  [c.164]

Для аппаратов, в которых производится переработка горячих сероводородных и окислительных серосодержащих сред, а также работающих в среде водорода и растворов хлоридов, основными характеристиками, определяющими работоспособность аппарата, становятся физико-химические свойства рабочей среды и металла, степень защищенности аппарата от коррозии, особенно контактирующей с агрессивной средой. Основным видом разрушения таких аппаратов является внутренняя коррозия. В условиях воздействия сероводородсодержащих продуктов имеют место практически все основные виды разрушений локализованной (язвенное, точечное и коррозионное растрескивание) и общей (равномерная и неравномерная) коррозии. Явление повышения коррозионного повреждения металла под действием механических напряжений принято называть механохимическим эффектом (МХЭ). Как будет показано далее в следующем разделе, наиболее сильно МХЭ проявляется в режиме нестационарного нагружения аппарата, которое реализуется в локальных областях перенапряженного металла при повторно-статических нагрузках.  [c.276]

Механохимический эффект учитывается путем введения в расчетах коэффициента усиления коррозии Кук от действия механических напряжений (раздел 6.3).  [c.362]

Коррозионное растрескивание реализуется как при статическом, так и при циклическом нагружениях. Отметим, что растрескивание возможно и при отсутствии внешних механических напряжений. Например, межкристаллитная коррозия (МКК) некоторых нержавеющих сталей и сплавов. Естественно, отмеченный вид МКК усиливается при приложении внешних силовых нагрузок.  [c.396]


Чаще всего оборудование эксплуатируют в условиях, способствующих возникновению и интенсивному развитию местных видов коррозии. К таким условиям относятся контактирование разнородных металлов (контактная коррозия) наличие в конструкции щелей и зазоров (щелевая коррозия) одновременное воздействие на металл электролита и механических напряжений (коррозионное  [c.5]

Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание.  [c.14]

Наиболее эффективный метод защиты от коррозии трубопроводов, резервуаров, обсадных колонн скважин, шлейфов и т. д. от подземной коррозии — это комплексная защита, которая включает одновременное применение изоляционных материалов и катодной поляризации. Применение только изоляционных покрытий не дает положительного эффекта из-за невозможности обеспечения полной сплошности покрытия, так как либо имеется заводской неустраненный брак, либо покрытия повреждаются при строительстве и монтаже, либо разрушаются в процессе эксплуатации в связи с воздействием температуры, механических напряжений и, наконец, времени. В местах нарушения изоляции агрессивная среда входит в контакт с металлом и обусловливает течение коррозионного процесса. Необходимо отметить, что из-за облегчения доступа деполяризатора (в основном кислорода) к металлу в дефектах изолированной конструкции скорость коррозии нередко выше скорости коррозии металла неизолированных конструкций.  [c.74]

Влияние каждого из этих факторов определяет характер ведущего процесса разрушения поверхности—механического (влияние среды незначительно), сплошной коррозии (роль напряжений невелика), коррозионного растрескивания (одновременное действие активной среды и внутренних напряжений).  [c.87]

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

История создания оборудования из армированных пластиков относится к началу 50-х годов. В то время конструирование изделий основывалось на догадках, и неудачи происходили вследствие неправильной сборки или транспортировки изделий или просто из-за недостатка знаний. Было неясным, является ли потеря прочности через определенный период времени следствием коррозии или воздействия механических напряжений. В связи с этим при конструировании емкостей их прочность выбирали либо чрезмерно высокой, либо низкой, и казалось, что не существует золотой середины. Однако к концу 50-х годов появились армированные пластики, способные противостоять коррозии.  [c.310]


Межкристаллитной коррозией металлических сооружений называется разрушение их, происходящее преимущественно по границам кристаллов (зерен) металла под воздействием окружающей коррозионной среды и постоянных или переменных механических напряжений. Межкристаллитная коррозия наблюдается в основном на свинцовых оболочках подземных кабелей различного назначения.  [c.3]

Хара ктер продуктов коррозии зависит от условий, в которых протекает коррозионный процесс. Например, лри периодическом попадании -на поверхность металла брызг раствора солей наблюдается отслаивание продуктов коррозии на сплавах алюминия, легированных 4% Си, 0,7% М , 0,8% 51, 0,55% Мп и 5,02 /о Си, 0,52% Мп, 0,11% Сд. В этом случае интенсивное разрушение металла, сопровождающееся отслаиванием продуктов коррозии, обусловливается развитием межкристаллитной коррозии. Механические напряжения способствуют отслаиванию продуктов коррозии и разрушению образца. При полном погружении образцов в аналогичную коррозионную среду разрушений такого вида не наблюдается [47]. При старении и обезвоживании все виды гидроокисей переходят в окись алюминия у -АЬОз с кубической решеткой шпинельного типа и с постоянной а = 7,90А. В решетке находится 12 молекул.  [c.28]

Характер адсорбции на отдельных кристаллйграфических плоскостях. При образовании защитных пленок может иметь значение не только плотность упаковки плоскости кристалла, но и соответствие кристаллографической структуры поверхности металла и возникающей пленки. При большом несоответствии в пленке возникают механические напряжения, приводящие к ее разрушению. Иногда кристаллографическая ориентация оказывает влияние на механизмы протекания анодного и катодного процессов электрохимической коррозии металлов.  [c.327]

Многие детали машин подвергаются одновременному действию переменных напряжений и коррозионной среды, что весьма сильно понижает кривую Вёлера и изменяет ее характер металл не имеет предела усталости, так как кривая коррозионной усталости металла все время снижается (кривая 2 на рис. 233). Такой ход кривой обусловлен тем, что если бы переменные напряжения отсутствовали совсем, образец через какое-то время все равно разрушился бы от коррозии. В качестве условного предела коррозионной усталости (выносливости) металла принимают максимальное механическое напряжение, при котором еш,е не происходит разрушение металла после одновременного воздействия установленного числа циклов N (чаще всего N 10 ) переменной нагрузки и заданных коррозионных условий.  [c.336]

Коррозионное растрескивание и коррозионно-усталостное разрушение металлов следует отличать от межкристаллитной коррозии металлов, протекающей без наличия механических напряжений в металле. Разрушения металлов типа коррозионного растрескивания и коррозионной усталости имеют много общего, поскольку характерным для обоих явлений является образование в металле трещин и отсутетвие на его поверхности значительных раз.ъеданий. Только изредка наблюдаются небольшие местные разъедания. Несмотря па большое количество исследований, механизм трещинообразования и развития трещин еще недостаточно ясен. Однако в большинстве исследований (Ю. Р. Эванс, Г. В. Акимов, Н. Д. Ромашов, А. В. Рябченков, Е. М. Зарецкий, В. В. Герасимов и др.) подтверждается электрохимический характер коррозии. Наряду с электрохимическим фактором на коррозионный процесс оказывают влияние и факторы механического и адсорбционного снижения прочности металла. В зависимости от преобладающего действия того или иного фактора характер коррозионного разрушения может изменяться.  [c.107]

Добавление марганца или магния в алюминиевомедиый сплав улучшает его механическую прочность, а также коррозионную устойчивость. Сплавы типа магналий, содержащие от 4 до 2% Mg и до 17о Мп и иногда 0,1% Т1, обладают хорошей коррозионной стойкостью и механическими свойствами, близкими к дюралюминию. Сплавы, содержащие более 5% Mg, склонны к межкристаллитной коррозии под напряжением.  [c.272]

Микроскопическое исследование является в особенности необходимым в тех случаях, когда предполагается на. шчие меж-кристаллитной коррозии или наличие разрушения от совместного воздействия коррозионной среды и механических напряжений.  [c.335]

Если принять среднюю скорость коррозии при отсутствии механических напряжений в средах, содержащих сероводород и углекислый газ (табл. 1.1, "жёсткая" вода), швной = ХД  [c.12]

Наиболее сильное влияние на скорость и характер углекислотной коррозии углекислотной стали в вромьслзвых средах оказывает, по нашему мнению, напряжённое состояние стали. Так, авторами было установлено, что при углекислотной коррозии углеродистой стали 10 под действием механических напряжений растяжение выше С,Б ЦОи Ша) в пластовой минерализованной (190 г/л) среде под давлением двуокиси углерода 2,5 Ша наряду с общей равномерной коррозией со скоростью проникновения до 0,1 мм/год протекает питтин-говая и язвенная коррозия со скоростью проникновения до 1,0 мм/год и нвводорокивание металла за счёт реакции водородной де-оояяризвциы.  [c.17]

Цель работы - определить скорость коррозии аустенитной хромникелевой стали в зависимости от величины механических напряжений растяжения.  [c.76]

На процесс коррозии аустенитной стали при действии механических напряжений оказывают совместное влияние два основных фактора выделение а-фазы пониженной коррозионной стойкости с образо--ванием электрохимической гетерогенности (неоднородности) металла и повышение энергии кристаллической решетки (механохимический эффект), в результате чего облегчаются анодная и катодная полуреак-ЦИИ /7/.  [c.79]


Коррозия теплообменников. В соответствии с технологической схемой подготовки сырой нефти перед деэмульгацией ее подогревают сначала до 30—40° С товарной нефтью, выходящей из установок, а затем до 60—70° С в паровых теплообменниках или огневых печах. Для подогрева сырой нефти используют теплообменники двух типов кожухотрубные и труба в трубе. Теплообмен между сырой и нагретой нефтью осуществляется по принципу противотока. Наиболее уязвимой частью подогревателей по отношению к коррозии являются трубные пучки. Срок их службы составляет 1,5—3 года, что зависит в основном от типа применяемого реагента-деэмульгатора. Особенно интенсивно развивается коррозия трубок в местах их развальцовки на трубных досках. Здесь кроме агрессивного воздействия самой среды сказываются еще и механические напряжения, возникающие вследствие пластической деформации металла и больших перепадов температур между сырой и товарной нефтью.  [c.168]

Установлено, что при концентрации 3000 мг/л Na2Si03 (1800 мг/л Si02) полностью прекращается и общая, и локальная коррозия в средах, содержащих до 700 мг/л С1-, до 860 мг/л S04 или до 430 мг/л С1 + -f350 мг/л S04 . Силикат натрия обеспечивает практически полную защиту от коррозии углеродистых котельных сталей, независимо от механического напряжения и состояния поверхности. Это можно объяснить диффузионным контролем катодного процесса, установленным экспериментами [33]. В отличие от действия одного едкого натра, недостаточная концентрация силиката натрия для полной защиты практически не вызывает локальной коррозии. Последняя наблюдается  [c.76]


Смотреть страницы где упоминается термин Коррозия механических напряжений : [c.13]    [c.15]    [c.331]    [c.7]    [c.100]    [c.170]    [c.34]    [c.278]    [c.341]    [c.149]    [c.149]    [c.371]    [c.8]    [c.11]    [c.42]    [c.78]    [c.78]    [c.255]    [c.255]    [c.39]    [c.89]    [c.126]    [c.43]    [c.38]    [c.38]   
Коррозионная стойкость материалов (1975) -- [ c.54 , c.56 ]



ПОИСК



Влияние одновременного действия механических напряжений и коррозии

Коррозия под напряжением

Напряжение механическое

Общие представления о коррозии под напряжением Общая характеристика коррозионно-механического разрушеНекоторые аспекты механики коррозионного разрушения

Этап зарождения трещин коррозии под механическим напряжением



© 2025 Mash-xxl.info Реклама на сайте