Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазеры требования

Укажем, что излучение лазера (оптического квантового генератора) в наибольшей степени отвечает сформулированным требованиям — расходимость пучка очень мала, и излучается обычно строго определенная длина волны. Однако и это утверждение требует более подробного обсуждения.  [c.32]

Лазер излучает световой луч в виде нескольких пучков, и по.этому еще одно требование, предъявляемое к лазерам, связано с пространственной когерентностью их излучения, которая определяется степенью интерференции этих отдельных пучков. Пространственная когерентность не влияет на качество голограммы, если лучи из разных пучков не перемешиваются и при записи происходит их полное совмещение.  [c.35]


Особенно высокие требования предъявляются к частотно-контрастным характеристикам при получении толстослойных (трехмерных) голограмм, так как расстояние между пучностями в. этом случае имеет порядок л/2, что при длине волны гелий-неонового лазера (/.= 0,6328 мкм) требует разрешения около 5000 линий/мм при высоком контрасте.  [c.38]

Все эти требования легко удовлетворяются, если голограмму записывают с помощью импульсного лазера (длительность импульса порядка 1 мс). Применение лазеров с так называемым гигантским импульсом , длительность которого составляет несколько наносекунд или десятки наносекунд, а мощность — до миллиарда киловатт, позволяет получать голограммы даже быстродвижущихся объектов.  [c.40]

Эти свойства лазеров позволяют существенно снизить требования к элементам оптики, применяемым в интерферометрах, и создать компактный прибор, имеющий простую конструкцию без многократной настройки опорного луча.  [c.223]

Твердотельная квантовая электроника базируется на монокристаллах сложных оксидов, содержащих элементы редкоземельной группы. При рассмотрении основных требований, предъявляемых к твердотельным лазерам, в книге одновременно обосновывается выбор оптимального состава материала их активной среды.  [c.4]

Так как аморфные пленки нагревают лишь до температур меньше 100 °С, они обладают высокой чувствительностью при записи. Это позволяет применять для записи полупроводниковый лазер и полимерную подложку. Низкая мощность лазерного излучения обеспечивает повышенное число циклов перезаписи. Кроме того, эти пленки высоко термостабильны и слабо подвержены коррозии. Недостаток пленок — значительная зависимость температуры Кюри от их состава, вследствие чего к ним предъявляют повышенные требования по однородности.  [c.32]

ТРЕБОВАНИЯ К АКТИВНОЙ СРЕДЕ ЛАЗЕРОВ  [c.64]

Сформулируем основные требования, предъявляемые к активатору. Ионы активатора должны обладать системой энергетических уровней, обеспечивающих работу лазера по четырехуровневой схеме (см. рис. 33, б). Конечный уровень лазерного перехода (уровень 2 на рис. 33, б или уровень 1ц/12 на рис. 34) должен быть расположен выше основного уровня (уровня 1  [c.65]

Сформулируем основные требования, предъявляемые к матрице активного материала лазера. Прежде всего матрица должна быть прозрачной, т. е. она не должна иметь энергетических уровней, переходы меладу которыми лежат в области длин волн генерации или  [c.66]

Условия работы активного материала лазера также накладывают определенные требования на свойства матрицы. В первую очередь она должна обладать высокой теплопроводностью. Твердотельные лазеры на диэлектрических монокристаллах имеют весьма небольшой кпд (порядка 1—5 %) и, следовательно, весьма значительная часть энергии накачки идет на нагрев активной среды.. Если активная среда не может эффективно рассеять эту энергию, то неизбежен выход из строя всей системы. Наиболее приемлемыми свойствами в этом отношении обладают монокристаллы сапфира (рубина) и именно этим фактом объясняется их использование, несмотря на трехуровневую схему генерации.  [c.67]


Какие требования предъявляют к матрицам лазеров  [c.78]

Твердые диэлектрики для оптических квантовых генераторов (лазеров) являются активной средой, представляющей собой кристаллическую или стеклообразную матрицу, в которой равномерно распределены активные ионы (активаторы). Все процессы поглощения и излучения света связаны с переходами электронов между уровнями активного иона, при этом матрица играет пассивную роль. Спектр излучения лазера в основном зависит от типа активного иона. Как вещество кристаллической или стеклообразной основы, так и активаторы должны удовлетворять целому ряду специфических требований. Свойства некоторых лазерных материалов приведены в в табл. 6.7,  [c.247]

Твердотельные и жидкостные лазеры. Активной средой твердотельных лазеров являются кристаллы и стекла, содержащие в качестве активных примесей ионы переходных металлов (например, Сг), редкоземельных элементов (например, N l), актинидов (например, U). К ним предъявляются требования высокой прозрачности, однородности свойств, механической прочности и стойкости к излучению. Основным способом энергетической накачки является оптический. В качестве примера приведем лазеры на рубине и на алюмо-иттриевом гранате.  [c.341]

В связи с появлением лазеров, излучающих большие уровни мощности, появилась необходимость построения ослабителя с большим коэффициентом ослабления (К = 10 - 10 ), постоянным в широком спектральном интервале. Данным требованиям удовлетворяют металлические диффузно отражающие поверхности, п( з-воляющие получать относительно равномерное распределение отраженного потока в большом телесном угле, приближающемся к полусфере. Характер рассеивания определяется главным образом качеством изготовления диффузно отражающей поверхности. Схема ослабителя лазерного потока при наличии диффузного отражателя показана на рис. 59.  [c.92]

Высокие плотности мощности и энергии, получаемые в современных лазерных установках, могут приводить к нелинейным оптическим эффектам, которые отсутствуют при работе с обычными световыми потоками. Поэтому необходимо сводить к минимуму взаимодействие между излучением и системами контроля. Общим требованием для всех методов измерения является по возможности максимальное удаление приемника излучения от лазера. Однако, если это требование выполнить не удается и излучение контролируется непосредственно около лазера, то необходимо тщательно его отфильтровывать, чтобы исключить попадание на приемник спонтанного излучения света лампы накачки, а при работе в инфракрасном диапазоне и осветительных приборов.  [c.94]

Для обработки тонких покрытий толщиной 500—2000 А необходимо обеспечить плотность энергии излучения 1—60 Дж/см , а для уменьшения повреждения подложки и термического искажения рисунка длительность лазерного импульса должна находиться в пределах от 10 до 500 не. Этим требованиям удовлетворяют твердотельные н газовые лазеры с модуляцией добротности резонатора, химические лазеры на органических красителях и полупроводниковые. Из табл. 25 видно, что выбор лазеров.  [c.160]

Указанные свойства лазеров открывают широкие возможности их применения прежде всего в машиностроении, например, при изготовлении с очень высокой точностью гигантских станков, деталей астрономических приборов и радиотелескопов, контроле перемещений рабочих органов компараторов, координатно-измерительных машин, прецизионных металлообрабатывающих станков с числовым программным управлением и т. д. Большие перспективы использования лазерных интерферометров в станкостроении обусловлены тем, что их технические характеристики отвечают требованиям, предъявляемым современным точным станкостроением к измерительной аппаратуре увеличение диапазона и скорости контролируемых с высокой точностью перемещений, возможность автоматизации процесса измерения и получение результатов измерения в цифровой форме, удобной для оператора.  [c.229]

В машиностроительной промышленности постоянно повышаются требования к точности. В некоторых случаях допуски так малы, что контроль изделий традиционными методами становится чрезвычайно трудным или вовсе невозможным. Лазерная техника оказалась способной выполнять и эту задачу. Так, например, лазерные интерферометры, которыми оснащены некоторые координатно-измерительные машины, обеспечивают контроль перемещений рабочих органов с точностью до 0,01 мкм. При этом сигнал с интерферометра преобразуется в цифровые показания, что значительно сокращает время на проведение контрольных замеров и в комплексе с ЭВМ создает условия для полной автоматизации всего процесса. Промышленность выпускает также лазерные приборы для контроля параметров шероховатости обработанных поверхностей и выявления мельчайших поверхностных дефектов (раковин, царапин и т. п.). Можно привести еще и другие примеры эффективного использования лазера. Однако это лишь начало широкого применения этого замечательного изобретения, открывшего новые перспективы ускорения технического прогресса. Лазерный луч настойчиво входит в технологию машиностроения.  [c.49]


Требования, предъявляемые к параметрам лазерного излучения различными технологическими процессами, весьма разнообразны, а порой и противоречивы. Так, например, в селективной технологии наиболее важными параметрами излучения являются интенсивность и монохроматичность лазерного пучка, а в термической технологии монохроматичность практически несущественна. В связи с этим выбор единого критерия оценки качества излучения лазера практически невозможен. Тем не менее на практике существует острая необходимость в наличии показателей, позволяющих сравнивать различные лазеры между собой или характеризующих пригодность конкретного лазера для тех или иных технологических операций. Способность лазерного излучения к фокусировке удобно описывать безразмерным коэффициентом расходимости йе, равным  [c.73]

Одним из основных требований, предъявляемых к любому методу накачки лазеров, является однородное, а в случае непрерывной генерации и стабильное во времени возбуждение рабочего тела. Это означает, что используемая в качестве активной среды плазма газового разряда должна быть не только по возможности однородна, но и устойчива относительно всегда присутствующих в реальных условиях флуктуаций различных параметров. В определенных ситуациях эти вначале малые, случайные флуктуации могут начать нарастать необратимым образом, в результате чего плазма переходит в новую, так называемую неустойчивую фазу, характеризующуюся неоднородным распределением в пространстве концентраций частиц, плотности тока, электрических полей, плотности выделяемой энергии и других параметров.  [c.84]

Требования, предъявляемые к параметрам импульсных СОг-лазеров со стороны технологов, определяются конкретной задачей и могут существенно различаться. Для процессов селективной технологии необходимы короткие (SlO с) длительности импульсов, высокая интенсивность излучения и высокая частота их повторения. В качестве примера установки, в которой эти требования удовлетворены наиболее просто и полно, можно назвать экспериментальные лазеры типа Дятел (см. табл. 4.6).  [c.147]

Рабочий активный элемент технологического лазера должен удовлетворять большому числу зачастую противоречивых требований. Он должен обеспечивать большой коэффициент усиления, быть оптически однородным, механически прочным, термостойким, технологичным, прозрачным для излучения накачки, а также допускать механическую и оптическую обработку, допускать изготовление образцов больших размеров и иметь высокую теплопроводность. Поэтому неудивительно, что число активных элементов, используемых в технологических лазерах, крайне невелико. Их характеристики приведены в табл. 5.1.  [c.169]

Сварной шов при импульсном излучении образуется наложением сварных точек с их взаимным перекрытием на 30...90 % в зависимости от типа сварного соединения и требований к нему. Промышленные сварочные установки с твердотельными лазерами позволяют вести шовную сварку со скоростью до 5 мм/с при частоте импульсов до  [c.237]

Детали малой толщины можно сваривать также газовыми и твердотельными лазерами непрерывного действия мощностью до 1 кВ-А. Лучше всего формируется шов при стыковом соединении тонких деталей. Однако при сборке таких соединений под лазерную сварку предъявляются более жесткие требования должен быть обеспечен минимальный и равномерный зазор в стыке и практически полное отсутствие смещения кромок.  [c.238]

Указанные параметры являются приближенными, поскольку на практике они зависят от вида обрабатываемого материала и выходных характеристик используемого лазера. Требования при операциях резки, фигурной и поверхностной обработки, скрайби-рования и т. д. сводятся к компромиссному сочетанию этих параметров.  [c.107]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]

Идея записи и воспроизведения структуры электромагнитных полей была впервые высказана и продемонстрирована Дэннисом Габором в 1948 г. Им же был введен термин голограмма (в переводе — полная запись ). Работы Габора не имели широкого развития до появления лазеров, так как для голографии необходимы источники света с высокой пространственной и временной когерентностью при требованиях к мощности, несовместимых с возможностью обычных источников света. Как самостоятельная область оптики голография возникла после открытия лазеров. В 1962 — 1963 г.г. Лейт и Упатниекс впервые продемонстрировали высококачественные голограммы двухмерных и трехмерных объектов. Независимо от них в это же время Ю.Н. Денисюк, опубликовал экспериментально подтвержденную идею получения и восстановления объемных голограмм, имеющих принципиальное преимущество. Этот метод мы изложим чуть позже.  [c.354]


Основными требованиями, которым должны отвечать управляемые транспаранты, являются быстродействие (время перезаписи информации должно быть не более 1 мкс) больша з емкость и память, достаточные для хранения информации в процессе записи страницы оптическая и энергетическая эффективность. В настоящее время рядом фирм Японии, США, Франции и некоторыми отечественными лабораториями созданы МОУТ, которые удовлетворяют этим требованиям. Разработка быстродействующих МОУТ сделала реальным создание оптических процессоров, в которых в качестве источника излучения предполагается использовать доступные и дешевые полупроводниковые лазеры. Ожидаемое быстродействие таких оптических процессоров должно на два порядка превышать быстродействие современных полупроводниковых процессоров.  [c.38]

Для эффективной работы активатор должен иметь широкую полосу или группу интенсивных полос поглощения, соответствующих переходам на уровни, лежащие выше метастабильного уровня. Причем вероятность безызлучательных переходов с этих уровней на ме-тастабильный уровень должна быть больше, чем на основной. Выполнение этого требования позволяет значительно увеличить кпд лазера. В спектрах поглощения активного материала должны отсутствовать линии поглощения на длине волны генерации лазера, поскольку это сделает эффект генерации вынужденного излучения неэффективным.  [c.66]

Совершенствовались лазеры, увеличивалась их мощность, усложнялась дейтериевая мишень. Чтобы оценить сложность задачи, приведем небольшой пример. По расчетам теоретиков, оказалось, что условия протекания реакции будут лучше, если газообразный дейтерий закачать под давлением в 100 атмосфер в стеклянный шарик диаметром 100—200 микрон, причем толщина стенок шарика должна быть не больше 2—3 микрон. Сделать такой шарик — задача очень непростая, а ученые вдобавок выдвинули требование — толщина стенки по всей поверхности шарика должна быгь одинаковой, отклонение не может превышать 1 % И эту невероятно сложную  [c.218]

При работе в непрерывном режиме наиболее важными параметрами являются мощность лазерного излучения, его расходимость и диаметр луча. Чтобы обеспечить плотность мощности, достаточную для осуществления процесса упрочнения, необходимо получить высокую мощность непрерывного излучения. Этому требованию из многих твердотельных лазеров отвечает лишь лазер на алюмоиттриевом гранате.  [c.35]

Телевизионный микроинтроскоп обладает существенными достоинствами по сравнению с интроскопом, имеющим механическое сканирующее устройство. К ним относятся более высокая разрешающая способность, высокое быстродействие, которое обеспечивается менее инерционной сканирующей системой, позволяющей с помощью магнитоэлектрического вибратора (см. рис. 51) и кулачкового механизма формировать растр в 80—250 строк с полным временем не более 1,2 с. Однако телевизионный микро-интроскоп описанной выше схемы требует от лазерного источника повышенной временной и пространственной стабильности. Под этим требованием понимается равномерность засветки исследуемого образца по его поверхности, что возможно при использовании одномодового стабилизированного лазера.  [c.191]

Повышение требований к точности изготовления деталей и узлов приборов и машин изменило требования к процессу их обработки, а также к станкам, приспособлениям и инструментам. Возникла настоятельная необходимость замены последовательных во времени операций обработки и контроля параллельными, так как в первом случае системы измерений выполняют задачи регистрации и оценки, а во втором они могут выполнять задачи регулирования и управления, т. е. являются активным средством контроля, влияющим на процесс обработки. Особенно важно o6e net HTb указанные требования при измерениях размеров и перемещений, составляющих в машиностроении основную долю всех измерений (85—95%) [167]. При этом измерительные системы должны обладать высокой точностью, быстродействием, использовать бесконтактные методы измерения, что успешно выполняется при сочетании лазера с оптико-электронными устройствами.  [c.228]

Один из путей осуществления этого требования — наложение продольного магнитного поля на активный элемент газового лазера с внутренними зеркалами. Вследствие эффекта Зеемана на выходе лазера будут наблюдаться две компоненты излучения, сдвинутые по частоте и имеющие противоположные круговые поляризации. Такие двухчастотные лазеры использованы в интерференционных измерителях линейных перемещений типа 5525В фирмы Хьюлет—Паккард . В них информация о контролируемом перемещении содержится в разности частот (или фаз) переменных сигналов, вырабатываемых двумя фотоприемниками, вследствие чего изменение уровней этих сигналов не оказывает значительного влияния на работу прибора. Недостатком двухчастотного лазера является сложность его конструктивного выполнения и обеспечения длительного срока работы. Поэтому рассматриваются возможные пути преобразования излучения одночастотного лазера в две пространственно-разнесенные частотные составляющие  [c.247]

Требования к монохроматичности света не зависят от способа деления волнового поля, определяясь только порядком интерференции. Как отмечалось выше, И. с. в низких порядках наблюдается даже в белом свете. В свете изолированных спектральных линий газоразрядных источников света можно наблюдать интерференцию в очень высоких порядках —10 , т. е. при разностях хода в десятки см. Ото ещё недавно имело большое практич, значение для создания и контроля вторичных эталонов длины, опирающихся па длину волны онредел. атомной линии в качестве первичного эталона. В 80-е гг. для этой цели исно.чьзуется излучение одночастотных лазеров, позволяющих наблюдать интерференцию при практически неограниченной разности хода.  [c.167]

Наиб, широко применяемой кристаллич. матрицей с Nd является кристалл иттрий-алю.миниевого граната (ИАГ—Nd ), к-рый в наиб, степени отвечает совр. требованиям квантовой электроники и её приложений. Необходимые спектрально-люминесцентные свойства этого кристалла удачно сочетаются с его высокой механич. проч-носгью, таердостью, значительной теплопроводностью (0,13 Вт/см К) ИАГ—Nd -лазеры работают во всех перечисленных выше режимах. Именно на них получены рекордные мощности непрерывной генерации. Длина волны генерации ИАГ—Nd -лазера на осн. переходе неодима 1,064 мкм. Типичные размеры АЭ от 3x50 мм до  [c.49]

В настоящее время (1990-е гг.) существует много разл. лазеров, работающих во всех диапазонах спектра — от рентгеновского до далёкого инфракрасного. Однако применение лазерных усилителей в оптич, приборах до сих пор весьма ограничено. Связано это с тем, что усилители в лазерах и оптич. системах используются по-разному. В лазерах обычно стремятся получить предельно высокую направленность излучения, применяя для этого оптические резонаторы и ограничивая число генерируемых мод. В оптич. системах обычно требуется передать болыпой объём информации, заложенный в распределении амплитуд и фаз (иногда и поляризации) по полю зрения, на к-ром укладывается порядка 10 разрешаемых элементов. Такая много-канальность и есть одно из осн. преимуществ оптич. систем с У. я. Это накладывает дополнит, требования на У. я. для оптич. приборов, к-рый должен обладать большой угл. апертурой, чтобы пропустить большой объём информации, обеспечивать значит, усиление за один проход усиливающей среды и, естественно, не должен вносить искажений в усиливаемые световые поля. Достижение высокого усиления (а желательно иметь коэф. усиления 0,1 — 1,0 сми составляет осн. трудность на пути создания лазерных У. я. для оптич. систем. Высокий коэф. усиления (при прочих равных условиях) легче получить для узкого спектрального интервала и в коротких импульсах.  [c.243]


Способы возбуждения СО-лазеров практически не отличаются от СО2. Они эффективно накачиваются электронным ударом при передаче энергии от возбужденной молекулы N2 в химических реакциях. Важным с практической точки зрения отличием СО-лазера является более жесткое требование эффективного охлаждения рабочей смеси. Инверсия в СО-лазере исчезает уже при температуре смеси 350...400 К. Оценочные расчеты, проделанные для случая диффузионного охлаждения, показывают, что предельная вкладываемая на единицу длины газоразрядной трубки электрическая мощность снижается от 6 до 3 Вт/см при повышении температуры стенок от 77 до 300 К. С учетом реального при этих температурах т)эо 0,5...0,1 погонная мощность излучения СО-лазера будет снижаться от 300 до 30 Вт/м. Приведенные в литературе эксперим.ентальные данные подтверждают возможность получения мощностей 10 Вт с КПД 0,5 на смесях при температуре жидкого азота и резкое снижение выходных характеристик при повышении температуры стенок до комнатной.  [c.153]

Вернемся к дифракционным объективам, для нормальной работы которых необходимо лазерное освеш ение. Лазеры являются высококогерентными источниками, поэтому при их использовании в осветителях возникает ряд проблем. Первая заключается в том, что когерентность излучения приводит к возникновению когерентного шума [58], о котором упоминали при обсуждении требований к фурье-объективам (см. п. 4.5). Природа его состоит в том, что рассеянный на поверхностях и оправе объектива свет попадает в плоскость изображения и интерферирует со светом, несуш им полезную информацию. Если система включает ДОЭ, то в плоскость изображения попадает также свет, дифрагированный в нерабочие порядки ДЛ. В результате возникает паразитная интерференционная картина, которая накладывается на изображение и искажает его. Простой расчет показывает, что даже такая ничтожная доля паразитного света, как 1 %, приводит к контрасту интерференционной картины, равному 20%, в дифракционных же системах доля паразитного света может достигать 60—70 %.  [c.189]


Смотреть страницы где упоминается термин Лазеры требования : [c.485]    [c.361]    [c.792]    [c.78]    [c.485]    [c.50]    [c.236]    [c.501]    [c.46]    [c.591]   
Оптическая голография Том1,2 (1982) -- [ c.509 , c.510 ]



ПОИСК



Лазер

ОГС-лазеров в ДГС-лазерах

Природа энергетических уровней активаторных центров Требования к активной среде лазеров на диэлектрических монокристаллах



© 2025 Mash-xxl.info Реклама на сайте