Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодная пассивация кислородом воды

Пассивация металла связана с формированием защитной пленки очень малой толщины (10—100 А). На некоторых металлах эта пленка образуется из кислорода или из адсорбированных на металлической поверхности ионов, вытесняет адсорбированные молекулы воды и замедляет скорость анодного растворения, облегчая гидратацию ионов металла.  [c.54]

Сравнивая это количество с тем, которое обычно диффундирует через полимерные покрытия, легко прийти к выводу, что последние не представляют серьезного препятствия для диффузии реагентов, необходимых для развития коррозионного процесса. Количество проникающих воды и кислорода через полимерные пленки таково, что его вполне было бы достаточно для развития коррозии с той же скоростью, что и на чистом металле. Однако этого не происходит вследствие того, что отвод продуктов анодной реакции затруднен, как было показано выше, из-за малой ионной проводимости полимерных покрытий. Защитные свойства покрытий повышаются также благодаря введению пассивирующих пигментов или ингибиторов, способствующих пассивации металла.  [c.121]


Если поверхностные пленки обладают высокой электронной проводимостью, то при анодной поляризации на границе пленка-раствор может возникнуть разность потенциалов, достаточная для протекания процесса разложения молекул воды с образованием кислорода, или возникнет процесс перепассивации. В любом случае этим явлениям будет отвечать рост тока (участок 4 на рис. 4.22). Нере-пассивация связана с изменением свойств пассивирующей пленки.  [c.115]

Описанные опыты с титановым электродом повторили также в атмосфере аргона, и было установлено, что нет заметного отличия в ходе анодных потенциостатических кривых в условиях обновления поверхности по сравнению с кривыми, полученными в воздушной атмосфере. Это еще раз подтверждает, что титан может пассивироваться за счет кислорода (или ОН ) воды и в отсутствие молекулярного кислорода в растворе, как это впервые было показано в работе [16]. Аналогичное явление пассивации при непрерывном обновлении поверхности Т1-электрода было установлено и в растворе ш На.  [c.70]

Однако неблагоприятное действие хлоридов на пассивацию обычно также относят за счет различия в растворимости и оно вероятно может быть объяснено на основании положения, предложенного на стр. 134. В очень разбавленном растворе градиент потенциала будет заставлять молекулы воды вблизи анодной поверхности ориентироваться таким образом, чтобы кислородный конец молекулы был обращен к металлу, что обеспечивает легкость образования пленки катионы из металла, вместо того чтобы переходить в раствор, располагаются между ионами кислорода, а вместо них ионы водорода из молекул воды двигаются в толщу электролита.  [c.223]

Пассивирующие свойства нитрит-ионов большинство авторов связывает с образованием на поверхности стали окисной пленки РбгОз, которая затрудняет процесс анодного растворения. Наличие такого окисла было подтверждено экспериментально. Спорным остается лишь вопрос о его происхождении. Согласно точке зрения, изложенной выше, пассивирующий окисел появляется на поверхности металла в результате окисления низшего окисла з более высокий кислородом воды. Нитрит-ионы, адсорбируясь на поверхности, уменьшают лишь свободную энергию системы и этим облегчают пассивацию.  [c.179]

Потенциостатические исследования кинетики анодного растворения железа (рис. 5,23) показали, что анион бензойной кислоты оказывает сильное влияние на скорость анодного растворения железа. Даже в концентрированном растворе сульфата (1 н.) бензоат натрия при концентрации, равной 7-10- моль/л, вызывал сильную анодную поляризацию, сдвигал потенциал пассивации в положительную сторону и уменьшал ток пассивации примерно на два порядка. Такое пассивирующее влияние бензоата натрия в присутствии кислорода объясняется тем, что анион бензойной кислоты СбНбСОО- образует с железом через карбоксильные группы прочную химическую связь. Это уменьшает реакционную способность значительной части атомов железа на поверхности и облегчает пассивацию остальной части кислородом воды. На катодную реакцию, как и ожидалось, бензоат влияния не оказывает.  [c.180]


Несомненно, что механизм действия кислорода, освобождающегося из воды при электрохимическом окислении и растворенного в воде, различный. Напрашивается вывод, что растворенный кислород пассивирует поверхность по-иному, чем кислород, освобождающийся из воды за счет реакции электрохимического окисления. Очевидно, растворенный кислород облегчает анодную пассивацию благодаря адсорбции или слабому химическому взаимодействию с поверхностью металла, не приводящему к образованию двухзарядного кислорода. Возможно, что на поверхности металла находятся атомы кислорода, потерявшие лишь один электрон. В том и другом случае количество освобождающихся электронов при пассивации должно быть меньше, чем при образовании фазового окисла.  [c.317]

При анодной пассивации пигмент, обладающий окислительными свойствами или способностью образовывать трудно растворимые соединения с защищаемым металлом, создает условия для возникновения высокой плотности тока в порах защитных пленок. Благодаря этому, потенциал защищаемого металла сдвигается до такого положительного значения, при котором переход ионов металла из решетки в раствор становится невозможным и на электроде будут протекать лишь реакции образования фазовых или адсорбционных пассивных слоев. Такой тип защитной окисной пленки образуется в атмосфере на алюминии. Поскольку железные сплавы в обычных условиях не образуют защитных окисных пленок, то пассивация железа может иметь место лишь в случае включения в пленку покрытия ингибиторных пигментов. Для проявления ингибирующего действия, пигменты должны обладать либо основными свойствами, образуя мыла со связующим, как например, свинцовый сурик, образуюп в присутствии воды или кислорода дисперсные смеси, защищающие от коррозии, либо пигменты должны быть несколько растворимы в воде и действовать, как окислители.  [c.100]

Исследованием поляризации титана [102] было показано, что вода сильно затормаживает анодный процесс растворения титана, т. е. является в неводных средах анодным ингибитором К0рр031ии титана. Та ким образом, именно вода, а не анионы электролита, являются основным фактором, определяющим пассивное состояние титана в водных средах. Защитная окисная пленка на титане образуется за счет взаимодействия с кислородом воды. В ряде зарубежных работ [137], [147] также имеются указания на участие воды в процессе пассивации титана.  [c.108]

Титан и его сплавы имеют высокую прочность, хорошие технологические свойства и повышенную коррозионную стойкость. Темпы роста производства титана выше, чем других конструкционных металлов. Титан используют в химической, гидрометаллургической, пищевой про-мыленности, цветной металлургии и других отраслях [105 с. 25. 132—134]. Применение титана может быть экономически оправдано при использовании в природных коррозионных средах, особенно в морской воде (в подводных лодках глубокого погружения, опреснительных установках и т. д.). Коррозионная стойкость титана и его сплавов достаточно полно освещена в работах [39, 1Э5—137]. Катоднолегированные сплавы на основе титана рассмотрены в гл. IV. Здесь кратко суммируются данные, связанные с природой коррозионной стойкости титана особенностями электрохимического и коррозионного поведения титана и его сплавов. Окислы на титане возникают при окислении на воздухе, анодном окислении, а также при самопассивации его не только в сильноокислительных, но и в нейтральных и слабокислых растворах. Пассивация титана в электролитах происходит только в. присутствии воды, что указывает на участие в образовании защитных окисных слоев кислорода воды, а не молекулярного кислорода, растворенного в электролитах [39]. Особенностью титана является также его большое сродство к водороду. Гидрид на поверхности титана был обнаружен после коррозии его в растворах серной и соляной кислот, а также при растворении титана в плавиковой кислоте.  [c.224]

Наличие влаги делает грунт электролитом и вызывает электрохимическую коррозию находящихся в нем металлов. Увеличение влажности грунта облегчает протекание анодного процесса (затрудняя пассивацию металла), уменьшает электросопротивление грунта, но затрудняет протекание катодного процесса при значительном насыщении водой пор грунта (уменьшая аэрируемость грунта и скорость диффузии кислорода). Поэтому зависимость скорости коррозии металлов от влажности грунта имеет вид кривых с максимумом (рис. 277) — при большем избытке воды ско-  [c.386]


Состав атмосферы. Значительное увеличение скорости коррозии многих металлов наблюдается в промышленных и приморских районах, что связано с содержанием в воздухе SO2 и Na l. В атмосфере на поверхности металлов образуются слабо минерализованные пленки воды коррозионный процесс протекает так же, как в нейтральных электролитах, лишь с теми особенностями, которые присущи электрохимическим процессам, протекающим в тонких слоях электролита [3]. К этим особенностям в первую очередь относится увеличение скорости катодного процеса за счет способности тонких пленок электролита к саморазмешиванию, усиливающемуся при испарении. В естественных условиях такое размешивание происходит при высыхании вследствие испарения, например, при уменьшении влажности воздуха, повышении температуры и т. п. Скорость анодных процессов в тонких слоях электролитов замедляется, что объясняется увеличением подвода кислорода к металлу, а это в свою очередь обусловливает пассивацию, накопление продуктов коррозии в пленках электролита. Можно было предполагать, что замедление анодного процесса приведет к уменьшению скорости коррозии металлов в атмосферных условиях по сравнению с тем же показателем при протекании процесса при погружении в электролит. Однако это не происходит из-за значительных скоростей катодного процесса. Следовательно, в атмосферных условиях в видимых пленках электролитов коррозия протекает с катодно-анодным ограничением. Роль омического фактора несущественна при коррозии в пленках электролита толщиной 100—200 мкм.  [c.35]

Нитрит натрия. Как уже отмечалось, самый простой, доступный и весьма эффективный ингибитор для защиты стали в воде — нитрит натрия. Механизм его действия состоит в торможении анодного процесса, а эффективная защита может быть достигнута только тогда, когда анодный процесс подавлен полностью. Замедление анодного процесса происходит за счет пассивации железа оксидной пленкой FejOg, образовавшейся на поверхности стали при окислении нитритом. При малых концентрациях нитрита натрия в водном растворе большая часть поверхности экранируется и скорость анодного процесса на открытых участках увеличивается, так как облегчается процесс восстановления кислорода.  [c.82]

Алюминий и его сплавы имеют в ряде сред высокую коррозионную стойкость вследствие своей способности пассивироваться. Зависимость скорости растворения алюминиевого сплава, легированного до 2% магнием, хромом, кремнием, медью, от величины потенциала весьма сложная и характерна для металлов, способных пассивироваться (рис. 111-39). В активной области А В скорость растворения возрастает с увеличением потенциала. При достижении определенной величины потенциала В скорость растворения начинает уменьшаться с ростом потенциала ВС и становится минимальной в области пассивации СД. Последняя характеризуется постоянством скорости анодного процесса в определенной области потенциалов. С дальнейшим увеличением потенциала в области перепассивации ДЕ скорость анодного процесса вновь возрастает. При комнатной температуре значение потенциала алюминия непосредственно после погружения в дистиллированную воду соответствует активной области. С течением времени потенциал алюминия смещается в положительную сторону, и установившееся его стационарное значение отвечает участку области пассивации вблизи потенциала пробоя (точка Д). В искусственно неразмешиваемой дистиллированной воде потенциал алюминия смещается в отрицательную сторону на значительную величину при катодной поляризации с плотностью тока порядка 10 1—10 мка слЕ. При размешивании среды зависимость скорости катодного процесса ионизации кислорода от потенциала алюминия в полулогарифмических координатах выражается прямой линией. Следует отметить, что наличие области перепассивации у алюминия  [c.178]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]


Н. Я. Бунэ и Я. М. Колотыркиным [8] (рис. 1,7). Этот очень важный опыт убедительно показывает, что анодное поведение металла, переход его в пассивное состояние и перепассивация зависят только от величины потенциала, но не от причины, обусловливающей поддержание его. Каждому значению потенциала соответствует определенная скорость процесса, что для области активного растворения было показано А. И. Шултиным и Н. Н. Милютиным [91. Из работы [8] следует также, что одинаковое действие оказывают как окислители, богатые кислородом (СгаО ", МнО ), так и вовсе не содержащие кислорода (Ре , Се ). Это говорит о том, что не окислитель дает кислород, необходимый для пассивации металла. При достаточно высоком анодном потенциале металл реагирует с молекулами воды или ионами ОН , что приводит к пассивации.  [c.201]

Концепция адсорбции предполагает, что по мере увеличения анодного потенциала увеличивается адсорбция ОН" или воды, приводящая к образованию слоя хемисорбированного кислорода по реакциям (У1,2) или (VI,13). Прямым доказательством участия ОН или воды в пассивации служит анодное поведение хрома в растворе хлористого водорода в метаноле с различной концентрацией воды (рис. VI,33) [44]. В практически безводном растворе хром  [c.232]

Согласно представлениям А. Н. Фрумкина с сотрудниками [50], в основе пассивации металла лежит адсорбция компонентов раствора, главным образом анионов. Предполагается, что в первую очередь адсорбируются ионы 0Н , а затем молекулы воды. На поверхности стали образуется слой хемосорбированного кислорода. Адсорбция замедляет анодный процесс вследствие как изменения строения двойного электрического слоя, так и блокировки поверхности частицами адсорбента. В других же случаях, наоборот, адсорбция ОН может уско-  [c.131]

Анодные процессы. Анод сохраняется активным лищь при небольших анодных перенапряжениях Аф>0. При высоких потенциалах анода фан (более так называемого потенциала пассивации фп) на его поверхности вследствие окисления металла, например, кислородом, содержащимся в молекулах воды, образуется окисный слой. Согласно уравнению (120) потенциал активного анода фан, равный фп, может быть достигнут. благодаря суммарному или независимому действию концентрационного либо электрохимического перенапряжений. Появление слоя с высоким электрическим сопротивлением замедляет анодное растворение и приводит к так называемой пассивации. Закон Тафеля нарушается, потенциал пассивного анода включает в себя и падение напряжения в пассивирующем слое при протекании рабочего тока. В режиме электрохимической кине-  [c.219]


Смотреть страницы где упоминается термин Анодная пассивация кислородом воды : [c.129]    [c.66]    [c.70]    [c.339]    [c.20]    [c.108]    [c.123]    [c.166]    [c.213]    [c.291]    [c.97]    [c.150]    [c.147]    [c.12]    [c.374]   
Ингибиторы коррозии (1977) -- [ c.70 ]



ПОИСК



Анодная пассивация

Анодный

Кислород

Кислород в воде

Пассивация



© 2025 Mash-xxl.info Реклама на сайте