Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллизация скрытая теплота

Первичная кристаллизация металла сварочной ванны имеет прерывистый характер, вызванный выделением перед фронтом кристаллизации скрытой теплоты кристаллизации. Это приводит к характерному слоистому строению шва и появлению ликвации в виде слоистой неоднородности, которая в наибольшей степени проявляется вблизи границы сплавления. Слоистая ликвация также зависит от характера и скорости кристаллизации металла сварочной ванны. Слоистая и дендритная ликвации уменьшаются при улучшении условий диффузии ликвирующих элементов в твердом металле.  [c.257]


Сначала, когда металл находится в жидком состоянии, температура понижается равномерно до температуры кристаллизации Т, лежащей ниже температуры Т . При достижении температуры кристаллизации на кривой охлаждения появляется горизонтальная площадка, так как отвод теплоты в окружающую среду компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. После окончания кристаллизации температура вновь понижается равномерно. Как видно из кривых кристаллизации (рис. 1.5), чем больше скорость охлаждения, тем больше и степень переохлаждения и тем при более низкой температуре закончится процесс кристаллизации.  [c.9]

При достижении температуры кристаллизации на кривой температура — время появляется горизонтальная площадка, так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. По окончании кристаллизации, т. е. после полного перехода в твердое состояние, температура опять начинает снижаться, и твердое кристаллическое вещество охлаждается. Теоретически процесс кристаллизации изображается кривой 1, кривая 2 (на той же фигуре) показывает реальное протекание процесса кристаллизации. Жидкость непрерывно охлаждается до температуры переохлаждения Гп, лежащей ниже теоретической температуры кристаллизации Т . При охлаждении ниже температуры создаются энергетические условия, необходимые для протекания процесса кристаллизации.  [c.26]

Рост в виде монокристалла с минимальным количеством неравновесных дефектов будет происходить в неравновесных условиях только при выполнении определенных требований. Основные из них обеспечение преимущественного роста одного центра новой фазы и обеспечение отвода выделяющейся на фронте кристаллизации скрытой теплоты кристаллизации только через твердую фазу в направлении нормальном фронту кристаллизации. Рассмотрим более детально влияние условий роста кристаллов на их дефектность.  [c.240]

Коэрцитивная сила 541 Красностойкость 420 Кристаллизация вторичная 126 первичная 126 скрытая теплота 45 центры 46  [c.644]

Термические кривые, характеризующие процесс кристаллизации чистых металлов при охлаждении с разной скоростью, даны на рис, 17, При очень медленном охлаждении степень переохлаждения невелика и процесс кристаллизации протекает при темиературе, близкой к равновесной (рис, 17, кривая t j). На термической кривой при температуре кристаллизации отмечается горизонтальная площадка (остановка в падении температуры), образование которой объясняется выделением скрытой теплоты кристаллизации, несмотря на отвод тепла при охлаждении.  [c.29]


При кристаллизации доэвтектического сплава 2 (см. рис. 60, б) по достижении температуры несколько ниже в жидкости образуются кристаллы твердого раствора а. На кривой охлаждения (см. рис. 60, а) при /j отмечается перегиб, связанный с уменьшением скорости охлаждения вследствие выделения скрытой теплоты кристаллизации. Процесс кристаллизации а-раствора (т. е. сосуществования двух фаз) идет в интервале температур, так как система имеет одиу степень свободы (С -= 2 + 1 — 2 = 1).  [c.97]

При помощи термического анализа можно построить кривые нагрева или охлаждения вещества, записывая температуру через равные промежутки времени. Полученные кривые неодинаковы для кристаллического и аморфного веществ. На рис. 2.1,а приведена кривая охлаждения кристаллического вещества, которая показывает, что переход кристаллического вещества из жидкого состояния в твердое происходит при температуре кристаллизации (Ткр). Этот процесс перехода протекает в определенный промежуток времени и сопровождается выделением скрытой теплоты кристаллизации. Поэтому, несмотря на охлаждение металла, температура в течение данного времени остается неизменной (на кривой горизонтальный участок).  [c.21]

В результате кристаллизации освобождается некоторая энергия — теплота кристаллизации, численно равная скрытой теплоте плавления. Эта теплота отводится через границу раздела твердой и жидкой фаз в более холодное твердое тело.  [c.435]

При наличии термического переохлаждения АТ (рис. 12.9) выступы, образовавшиеся на меж-фазной поверхности, попадают в зону переохлаждения. Скорость их кристаллизации увеличивается, и они прорастают вперед. Плоский фронт теряет устойчивость, искривляется, на нем появляются ячеистые выступы. В момент выделения скрытой теплоты плавления процесс роста кристалла приостанавливается, возможно даже его оплавление. Кристаллизация приобретает прерывистый характер.  [c.442]

При охлаждении жидкого металла образуются кристаллические агрегаты. Такой процесс перехода называется кристаллизацией металлов. Охлаждение жидкого металла сопровождается потерей теплоты, уменьшением кинетической энергии атомов и их средней скорости в результате каждый атом занимает меньший объем, и объем металла также сокраш,ается. Этот процесс сопровождается увеличением сил связей между атомами и при температуре кристаллизации (теоретически температура кристаллизации равна температуре плавления) отдельные атомы теряют свободу к перемеш,ению. Возникают устойчивые группы атомов, имеющие строение с определенной симметрией. Эти группы являются центрами, к которым в процессе затвердевания присоединяются соседние атомы. Процесс кристаллизации металла сопровождается выделением определенного количества энергии (скрытой теплоты кристаллизации).  [c.44]

При затвердевании происходит самопроизвольно совершающийся процесс построения кристаллической решетки металла, во время которого резко уменьшается энергия движения его атомов. Выделяющаяся при этом так называемая скрытая теплота кристаллизации поддерживает температуру постоянной до исчерпания жидкой фазы, т. е. до конца кристаллизации фис. 1.4, участок  [c.13]

Скрытая теплота кристаллизации несколько повышается с ростом давления увеличивается и плотность. В табл. 1 приведены данные об изменении плотности некоторых сплавов в слитках, закристаллизовавшихся под поршневым давлением.  [c.15]

Для единицы контактной поверхности заданного объема металла с формой тепловой баланс в единицу времени определяется уравнением Уо уж =1,13 р (Гк—Гф), где Vo — критический объем жидкого металла, м q — кажущаяся скрытая теплота кристаллизации, ккал/кг, = о+Сш(7 ж—Тк) скрытая теплота кристаллизации, ккал/кг Сж — теплоемкость жидкого металла, ккал/кг Гк — температура кристаллизации в начале заливки, °С Тж — температура жидкого металла в момент заливки, ° С.  [c.77]

Возникновение её обусловлено тем, что при кристаллизации нек-рой области выделяется скрытая теплота кристаллизации, к-рая приводит к повышению темп-ры,  [c.561]


При охлаждении сплава 1 температура понижается до (рис. 36, а). При температуре начинается процесс кристаллизации и на кривой охлаждения отмечается перегиб (критическая точка), связанный с уменьшением скорости охлаждения вследствие выделения скрытой теплоты кристаллизации.  [c.52]

Выше мы предположили, что при кристаллизации отсутствует переохлаждение, и выделение твердой фазы начинается в истинной точке затвердевания. Если в хорошо перемешанном расплаве имеется некоторое переохлаждение, получится оста -новка такого типа, как на рис. 63, / горизонтальная часть кривой дает истинную точку затвердевания при условии, что количество металла достаточно велико, чехол термопары тонок и скорость охлаждения мала. Допустимое переохлаждение зависит от экспериментальных условий и при условиях, описанных выше, переохлаждение порядка 1° позволяет получить истинную точку затвердевания с точностью 0,1°. При переохлаждении 10—20° определение истинной точки затвердевания чистого металла возможно с точностью 1°, если количество металла достаточно для температурной остановки в несколько минут однако такого значительного переохлаждения следует избегать. При переохлаждении выделяющаяся скрытая теплота должна повысить температуру чехла термопары до истинной точки затвердевания. Эффект переохлаждения бывает опасен, если слиток мал (например, при исследовании редких ме--таллов). В таких случаях можно получить кривые охлаждения  [c.124]

В точке Г теплоотвод наибольший, значит, в жидком металле вблизи этой точки возникнет максимальное переохлаждение и, соответственно, кристаллит здесь будет расти с максимальной скоростью. Таким образом, скорость роста кристаллита по мере перемещения его вершины по фронту затвердевания возрастает от нуля до максимального значения. Но изменение этой скорости происходит немонотонно. Дело в том, что при затвердевании выделяется скрытая теплота кристаллизации, которая раньше была затрачена на разрыв связей между частицами твердого металла при его плавлении. Эта теплота уменьшает переохлаждение и наступает момент, когда рост кристаллита практически прекращается. Затем переохлаждение вновь увеличивается - кристаллит вновь начинает расти, ускоряясь.  [c.26]

Структура металла шва, оказывающая значительное влияние на механические свойства и стойкость против образования кристаллизационных трещин, определяется химическим составом основного и присадочного материалов, а также характером первичной кристаллизации и зависит от объема жидкой металлической ванны, от ее перегрева, характера теплоотвода по периметру шва. При ЭШС образуются крупные столбчатые кристаллиты, изгибающиеся к тепловому центру и направленные нормально к поверхности теплоотвода, которая имеет довольно сложную форму, зависящую от режима сварки (рис. 106). Периодические изменения скорости кристаллизации из-за выделения скрытой теплоты плавления приводят к образованию слоистой химической неоднородности.  [c.210]

Кривые охлаждения серии сплавов металлов А к В показаны на рис. 24, а. Кривая, обозначенная цифрой I, относится к чистому металлу А. При температуре выше точки li на кривой охлаждения металл А находится в жидком состоянии. В начале процесса кристаллизации на кривой охлаждения появляется площадка, связанная с выделением скрытой теплоты кристаллизации. После завершения кристаллизации происходит дальнейшее плавное охлаждение твердого металла А.  [c.35]

Рассмотрим кривые охлаждения нескольких типичных сплавов и изменение их структуры при охлаждении. Начнем со сплава, обозначенного на рис. 31 римскими цифрами / — I. На рис. 32, а показана кривая охлаждения этого сплава. До точки 1 сплав находится полностью в жидком состоянии. В точке 1 появляются первые кристаллы а-раствора. Условимся называть кристаллы, выпавшие непосредственно из жидкого раствора в ходе первичной кристаллизации, первичными. Будем обозначать их буквой с индексом I, например — ai. При охлаждении от температуры, соответствующей точке I, до температуры, соответствующей точке 2, постепенно весь жидкий сплав превратится в кристаллы ai. В этом интервале температур охлаждение сплава происходит замедленным темпом, так как выделяется скрытая теплота кристаллизации. Кристаллы ai ниже температуры, соответствующей точке 2 на кривой охлаждения, охлаждаются быстро. Кривая охлаждения идет круто вниз. При температуре, соответствующей точке 3, достигается предел растворимости металла 5 в металле А. Из твердого раствора oi начинают выпадать кристаллы твердого раствора р. Кристаллы, выпадающие из твердого раствора в процессе вторичной кристаллизации, назовем вторичными и обозначим их буквой с индексом II. Следовательно, кристаллы твердого раствора р, выпавшие из ai кристаллов, следует обозначать рц. Выпадение кристаллов Рп сопровождается выделением тепла. Поэтому кривая охлаждения ниже точки 3 пойдет более полого.  [c.47]

Р ассмотрим направленную кристаллизацию, которая происходит при постоянном направлении отвода теплоты и определенном градиенте температур в жидкой и твердой фазах. Распределение температуры у межфазной поверхности определяется соотношением градиентов температуры в жидкой и твердой фазах, а также выделением при кристаллизации скрытой теплоты плавления. В результате ее выделения температурные градиенты снижаются в области жидкой фазы и возрастают в твердой. Характер распределения температуры у межфазной поверхности определяет ее микрорельеф, а следовательно, и структуру металла, формирующуюся в процессе кристаллизации.  [c.441]


Граничные зоны структурных элементов поликристаллических материалов коренным образом отличаются от их внутренних областей. Перестройка объемной части структурных элементов поликристаллических тел в наиболее энергетически выгодную упорядоченную структуру в процессе посткристаллизации сопровождается выделением скрытой теплоты кристаллизации, которая диссипирует через поверхностные слои структурного элемента и обусловливает, таким образом, необходимость формирования фрактальных диссипативных структур в поверхностных переходных слоях конденсированных сред.  [c.113]

Так как в процессе кристаллизации выделяется скрытая теплота кристаллизации, а при расплавлении металла поглощается теплота плавления, эти процессы осуществляются при постоянной температуре горизонтальные площадки на кривых охлаждения и нагрева). Многие металлы обладают большой склонностью к переохлаждению. Поэтому у таких металлов в первый период криста г-лизации вследствие бурного выделения скрытой теплоты кристаллизации наблюдается подъем температуры ( седловина на кр 1вой 3). Движущей силой кристаллизации  [c.46]

Давление, прикладываемое к кристаллизующемуся расплаву, оказывает влияние на значения основных термофизических параметров литой заготовки температуру плавления, коэффициент теплопроводности, удельную теплоемкость, скрытую теплоту кристаллизации, плотность и т. п.  [c.8]

Центры кристаллизации новой фазы самопроизвольно зарождаются с заметной скоростью только при определенном значительном переохлаждении, что также связано с объемными изменениями при превращении и с необходимостью совершить работу против упругих сил и работу пластической деформации в момент образования зародыша, даже если он возникает на поверхности образца. Для возможности превращения необходимо выполнение условия ДФ > , где Е — упругая энергия и работа пластической деформации, связанная с образованием зародыша полиморфной модификации (отнесенная к грамм-атому металла) ДФ — разность свободных энергий исходной и образующейся аллотропических модификаций АФ = LATIT (L — скрытая теплота превращения АТ — переохлаждение Г, — температура равновесия фаз). Из этого условия следует, что температура переохлаждения, при которой могут возникать зародыши новой фазы, должна превышать АТ о = ETJL.  [c.17]

Выразив объем канала через его сечение и длину, а также подставляя значения скрытой теплоты кристаллизации, теплоты II температуры перегрева в уравнение, после соответствующего математического преобразования получим выражение жидкоте-кучести металла, необходимой для заполнения формы  [c.77]

Температура плавления алюминия очень чувствительна к чистоте металла и для высокочистого алюминия (99,996 %) составляет 933,4 К (660,3 °С), а температура начала кристаллизации алюминия по Международной шкале температур (1968 г.) считается равной 660,37 °С и используется в течение многих десятков лет для калибровки термопар. Повышение внешнего давления увеличивает температуру плавления алюминия, и она достигает 700 °С при давлении около 100 МПа (ЮООкг/см ). Температура кипения алюминия равна около 2767 К, скрытая теплота плавления для чистого алюминия — 397 Дж-г" (95,4 кал-г ), а скрытая теплота испарения — 9462 Джт- (2260 кaл г- ).  [c.13]

Структурные превращения в металлах и сплавах сопровождаются выделением или поглощением скрытой теплоты превращения (например, при распл1авлении металлов поглощается скрытая теплота плавления) или же связаны с аномальной удельной теплоемкостью, которая наблюдается, например при образовании сверхструктуры в Р-латуни. Отсюда следует, что при нагревании или охлаждении металла или сплава в одинаковых условиях структурные изменения должны вызвать изменение хода кривой температура — время. По перегибу кривой можно найти температуру структурного превращения. В условиях истинного равновесия температура (или температурный интервал), при которой происходит данное структурное превращение, является постоянной дл я данного металла ил1и сплава, но практически часто наблюдается температурный гистерезис структурного превращения. Например, при медленном охлаждении в условиях истинного равновесия жидкое олово затвердевает при постоянной температуре 231,9 но в обычных опытах часто оказывается возможным, прежде чем начнется кристаллизация, охладить жидкое олово на 20 или 30° ниже его истинной температуры затвердевания. Это явление обычно называется переохлаждением. Переохлаждение является результатом кристаллизации, происходящей путем зарождения центров и их роста.  [c.120]

До температуры 1535° С происходит плавное остывание жидкого железа. При 1535° С на кривой охлаждения появляется площадка. При этой температуре железо затвердевает и выделяется скрытая теплота кристаллизации. Пока все железо не затвердеет, температура не изменяется. В интервале от liSSS до 1400° С температура плавно снижается. В этом интервале железо имеет кристаллическую решетку объемноцентрированного куба — Fes.  [c.14]

На рис. 11 показаны кривые охлаждения металлов. Сначала происходит охлаждение жидкого металла—участок аб (рис. 11, а). Затем в точке б температура снижается настолько, что в жидком металле появляются первые кристаллы. После этого на некоторое время снижение температуры приостанавливает ся. Тигель продолжает терять тепло в окружающую среду, но это те1ПЛо компеншруется скрытой теплотой кристаллизации. Когда кристаллизация заканчивается (точка в), температура опять плавно снижается, твердый металл остывает.  [c.19]

Например, кривая охлаждения для сплава (стали) с 0,6% XZ (фиг. 75, 6) показывает, что при его затвердевании по мере охлаждения выделяется большое количество скрытой теплоты кристаллизации, что значительно уменьшает скорость охлаждения. В это время из жидкого сплава выделяются кристаллы аустенита до тех пор, пока он не превратится в один аустенит. Тогда начнется ускоренное падение температуры аустенита вплоть до точки А , ниже которой из него начнет выделяться феррит, что также вызывает выделение тепла, но сравнительно небольшое. Так продолжается до точки Ai, где при постоянной температуре происходит эвтекто-идное превращение, отвечающее температурной остановке на кривой охлаждения, когда оставшийся аустенит с 0,8% С переходит в перлит, и затем температура образовавшейся перлито-ферритной структуры снова понижается. /  [c.125]


Смотреть страницы где упоминается термин Кристаллизация скрытая теплота : [c.233]    [c.46]    [c.459]    [c.82]    [c.140]    [c.8]    [c.45]    [c.42]    [c.561]    [c.408]    [c.409]    [c.26]    [c.389]    [c.37]    [c.84]   
Металловедение (1978) -- [ c.45 ]



ПОИСК



Кристаллизация

Скрытие тел

Теплота кристаллизации

Теплота скрытая



© 2021 Mash-xxl.info Реклама на сайте