Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удельная теплоемкость, аномальная

При нагреве или охлаждении образца в печи скорость изменения температуры образца зависит от теплообмена между печью и образцом, причем тепло может передаваться конвекцией, лучеиспусканием и теплопроводностью. Степень отставания температуры образца от температуры печи зависит также от его удельной теплоемкости аномальное изменение удельной теплоемкости может вызвать слабый изгиб на кривых нагрева или охлаждения даже при отсутствии фазовых превращений, связанных с определенной скрытой теплотой. Мы опишем вначале явления, сопровождающие собственно фазовые превращения, а затем явления, происходящие в результате изменения удельной теплоемкости.  [c.122]


Наблюдаемое аномальное изменение плотности, электропроводности, удельной теплоемкости, теплового расширения и других свойств во многих металлах и полупроводниках при температурах, близких к температуре плавления, объясняют сильным возрастанием в веществах молярной доли вакансий. Изменение свойств кристалла показывает, что вблизи температуры плавления усиливается беспорядок в твердой фазе и идет подготовка к ее переходу в жидкую фазу. Еще большие изменения свойств происходят при плавлении [13]. Увеличение электропроводности в жидком кремнии примерно в 20 раз и в жидком германии в 11 раз-по сравнению с твердым состоянием свидетельствует о сильном увеличении межатомного взаимодействия в результате плавления. Интересно, что увеличение плотности кремния примерно на 9% и германия на 4,7% после расплавления коррелирует с изменением электропроводности. Магнитная восприимчивость Si и Ge в жидком состоянии значительно ниже, чем в твердом. Авторы связывают уменьшение суммарной магнитной восприимчивости с ростом спинового парамагнетизма свободных электронов в расплаве. Увеличение электропроводности и плотности при плавлении Ge и сплавов Ga—Sb и In—Sb свидетельствует о повышении координационного числа и возрастании металлического характера связей. Понижение электропроводности и плотности в сплаве Hg—Se связывают с уменьшением координационного числа.  [c.34]

Допуская возможность существования кластеров в кристалле, мы должны рассматривать их колебания как новый тип тепловых дефектов решетки [512]. В этой связи представляют интерес выявленные расчетом [581—583], а затем экспериментально обнаруженные [584, 585] у ряда чистых отожженных металлов тепловые дефекты неизвестной природы с энергией образования 0,2 эВ, которые могут быть обусловлены тепловым возбуждением атомных групп [585]. Все более возрастаюш ее превышение макроскопического теплового расширения кристаллов А1 [541, 542] и Na [586] над расширением решетки по мере приближения к точке плавления, аномальный рост удельной теплоемкости [587—590], электросопротивления [590, 591] и скорости самодиффузии атомов [592, 593] вблизи точки плавления щелочных металлов, обычно приписываемые развитию вакансий в решетке, с равным успехом могут быть объяснены все более отчетливым дроблением вещества на кластеры, разделенные аморфными прослойками атомов и совершающие колебательные движения.  [c.206]

Эксперименты в критической области трудно осуществить, главным образом потому, что некоторые из параметров принимают здесь аномальные значения. Например, из-за очень большой величины сжимаемости в критической области становятся существенными гравитационные силы, действующие на образец. Кроме того, образец может стать макроскопически неустойчивым из-за конвективных потоков, возникновение которых обусловлено сильной зависимостью плотности и удельной теплоемкости от температуры. Среди прочих эффектов следует отметить увеличение в некоторых случаях влияния примесей нужно упомянуть также, что время установления в системе термодинамического равновесия иногда очень велико (до нескольких дней). Поправки к обычным измерениям, малые в нормальных условиях, могут стать довольно большими. В качестве примера при-  [c.232]


Исследуемый образец помещают внутри оболочки, которую нагревают с постоянной скоростью (1,5 К/мин). Сам образец также нагревают до температуры, максимально близкой к температуре оболочки. Для таких адиабатических условий измерения (Т обр Т об) зависимость теплоемкости исследуемого образца от температуры рассчитывают по известному количеству подведенной к образцу в каждый момент времени электрической энергии. Используя такую методику, Сайкс установил резко выраженную аномальную температурную зависимость удельной теплоемкости медно-цинкового сплава (латуни), которая обусловлена эффектом упорядочивания структуры сплава при нагревании (рис.8.12).  [c.88]

Если для парамагнитных и диамагнитных металлов общие закономерности Грюнайзена (W = Ь С , где W — относительный температурный коэффициент объемного расшире 1ия, — коэффициент пропорциональности, j,— теплоемкость) об увеличении объемного расширения с повышением температуры оправдываются, то для ферромагнитных металлов они нарушаются. Аномальное расширение некоторых ферромагнитных сплавов. имеет ферромагнитную природу и исчезает выше точки Кюри. Эти сплавы в результате ферромагнитного взаимодействия при низких температурах имеют увеличенный удельный объем, и при нагреве до температуры Кюри нормальное термическое расширение компенсируется уменьшением дополнительной части объема, так как спонтанная намагниченность уменьшается с повышением температуры.  [c.272]

Углерод для нагревательных элементов печей 55 Углеродожелезные сплавы 37 Удельная теплоемкость, аномальная 44, 143, 162  [c.397]

Вода обладает многими специфическими свойствами, имеющими ярко выраженный аномальный характер. Все они - следствие особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды - льда - сопровождается не расширением, а сжатием, а при замерзании воды объем льда значительно увеличивается. Как известно, подавляющее большинство веществ при плавлении расширяется, а при затвердевании, наоборот, уменьшает свой объем. Аномально также влияние температуры на изменение плотности воды при росте температуры от 273 до 277 К плотность увеличивается, при 277 К она достигает максимальной величины, и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры имеет экстремальный характер. Минимальная теплоемкость достигается при температуре 308,5 К и вдвое превышает теплоемкость льда, а при плавлении других твердых тел тегаюемкость изменяется незначительно. Удельная теплоемкость воды аномально велика, она равна 4,2 Дж/(г К). Вязкость воды в отличие от вязкости других веществ растет с повьцнением давления в интервале температур от 273 до 303 К. Вода имеет температуру плавления и кипения, значитель-  [c.186]

Несмотря на большое теоретическое значение этой проблемы, мы не будем ее здесь рассматривать. Следует отметить, что разрушение упорядоченного расположения атомов связано с затратой энергии и отсюда—с аномальным повышением удельной теплоемкости в обл1асти критической точки. Эти эффекты подробно исследовал Сайкс [26], аппаратура которого описана ниже. Образование сверхструктуры сопровождается также увеличением электрической проводимости. Это объясняется тем, что вследствие волновой природы электронов их движение сквозь кристалл должно облегчаться при правильном распределении атомов. Наоборот, по мере повышения температуры упорядоченного сплава, электрическое сопротивление увеличивается аномально в области критической точки. Как будет показано ниже, экспериментальные исследования электрического сопротивления проливают свет на ход процессов упорядочения и разупорядочения (см. главу 27).  [c.44]

Структурные превращения в металлах и сплавах сопровождаются выделением или поглощением скрытой теплоты превращения (например, при распл1авлении металлов поглощается скрытая теплота плавления) или же связаны с аномальной удельной теплоемкостью, которая наблюдается, например при образовании сверхструктуры в Р-латуни. Отсюда следует, что при нагревании или охлаждении металла или сплава в одинаковых условиях структурные изменения должны вызвать изменение хода кривой температура — время. По перегибу кривой можно найти температуру структурного превращения. В условиях истинного равновесия температура (или температурный интервал), при которой происходит данное структурное превращение, является постоянной дл я данного металла ил1и сплава, но практически часто наблюдается температурный гистерезис структурного превращения. Например, при медленном охлаждении в условиях истинного равновесия жидкое олово затвердевает при постоянной температуре 231,9 но в обычных опытах часто оказывается возможным, прежде чем начнется кристаллизация, охладить жидкое олово на 20 или 30° ниже его истинной температуры затвердевания. Это явление обычно называется переохлаждением. Переохлаждение является результатом кристаллизации, происходящей путем зарождения центров и их роста.  [c.120]


Таким образом, плавная кривая охлаждения, получающаяся при отсутствии превращения, является результатом баланса нескольких факторов в результате изменения любого из этих фа1КТ0 ров на кривой охлаждения появляется изгиб. Если, наприме р, в пределах ограниченной температурной области удельная теплоемкость образца меняется аномально, то это влияет на форму кривой охлаждения (или нагревания) даже при отсутствии теплового эффекта.  [c.144]

Предплавлеиие, предсказанное Борелиусом, найдено в нескольких органических материалах и нескольких тио-цианатах происходит предварительный распад структуры перед плавлением [559]. Уже говорилось об увеличении концентрации вакансий в щелочных металлах ниже точки плавления. Карпентер [562, 563J сообщает об аномальном поведении удельной теплоемкости у лития, калия и натрия в интервале температур на 50— 100 град ниже точки плавления, возможно, вызываемом образованием вакансий. Сообщается о подобной же странности в физических свойствах висмута, цинка, кадмия [565], олова, кадмия [566], магния [566, 567], индия, калия [568] и алюминия, золота и серебра [569]. Несомненно, некоторые из этих аномалий связаны с местным плавлением, вызываемым примесями [573, 574] (образование частиц жидкости в твердой фазе не представляет проблемы, так как при этом увеличивается энтропия), которые стремятся скопиться в уже отчасти разупорядо-ченных местах решетки (дислокации и скопление дефектов).  [c.159]

Тепловая энергия, подводимая при нагревании к упорядоченному сплаву, не только увеличивает амплитуду тепловых колебаний атомов, но также вызывает разупорядочение структуры. Поэтому удельная теплоемкость сплава больше теплоемкости, рассчитанной аддитивно из свойств компонентов. По мере разупо-рядочения структуры удельная теплоемкость возрастает до тех пор, пока около критической точки, где этот процесс идет быстро, она не становится аномально большой. После полного исчезнове-  [c.122]

Физические свойства воды характеризуются несколькими аномальными особенностями при плавлении льда происходит увеличение плотности от 0,92 до 1,00 г/сл при повышении температуры плотность воды меняется по кривой с максимумом при 4° С из всех жидких и твердых веществ вода имеет наибольшую удельную теплоемкость. В зависимости от "ремпературы ее теплоемкость меняется по кривой с минимумом при 27° С (при 15 и 70° С ее значения равны единице) из всех известных жидкостей вода имеет наибольшую скрытую теплоту плавления (1,42 ккал/моль) и испарения (9,7 ккал/моль при 100° С).  [c.107]

Существование аномальной удельной теплоемкости бромистого серебра было впервые предсказано Моттом и Герни [1].  [c.34]

Рассмотренный диссипативный процесс описывается в нелинейном уравнении движения и переноса энергии членом, линейным как по колебаниям температуры, вызванным звуковой волной, так и по флуктуациям плотности или состава в первоначальном рассмотрении Фиксмен пренебрегал членами второй и более высокой степени по локальным флуктуациям. В последних исследованиях Фиксмен нашел способ учета квадратичных членов и показал, что они сильно связаны с локальными температурами. Эти члены обусловливают аномальное поведение удельной теплоемкости в согласии с экспериментом по критическим явлениям в растворах и частотную  [c.198]


Смотреть страницы где упоминается термин Удельная теплоемкость, аномальная : [c.530]    [c.46]    [c.53]    [c.184]    [c.222]    [c.530]   
Диаграммы равновесия металлических систем (1956) -- [ c.44 ]



ПОИСК



Теплоемкость аномальная

Теплоемкость удельная

Теплоемкость. Удельная теплоемкость



© 2025 Mash-xxl.info Реклама на сайте