Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параболические цилиндрические координаты

Другие свойства параболических цилиндрических координат можно вывести из свойств параболоидных координат, рассматриваемых в разд. А.21. Например, аналогом соотношений (А.21.7) в данном случае являются  [c.575]

Парадоксы уравнений медленного течения 65—67 Параболические цилиндрические координаты 574—575 Параллелепипеды, данные по осаждению 269 Перепад давления, вызванный присутствием частиц 108—111, 361, 391, 416-422, 486 Плоскость меридиональная 577 Плотность 38  [c.617]


Если имеются объемные силы, допускается только одна компонента объемной силы в направлении Хз. Впрочем, можно также применять эллиптические или параболические цилиндрические координаты.  [c.109]

Системы координат приведенного вьппе типа по очевидным причинам называются сопряженными системами. Важными примерами этих систем являются координаты эллиптического цилиндра, биполярные цилиндрические координаты и координаты параболического цилиндра, рассматриваемые в разд. А.11 — А.13.  [c.569]

Можно считать, что течение газа в зоне минимального зазора описывается уравнением Рейнольдса для осесимметричного течения несжимаемой жидкости с параболическим распределением скорости по толщине слоя. Уравнение в цилиндрических координатах имеет вид  [c.32]

В целях сопоставления отыскиваемого решения с известными положим, что жидкость входит на участок теплообмена при постоянной по сечению температуре Т] с параболическим распределением скоростей, описываемым в цилиндрической системе координат с осью 2, совпадающей с осью трубы, формулой Стокса  [c.58]

В 3.5 на основе точных решений ИУ первого рода, содержащих в качестве ядер эллиптические функции Якоби (см. 1.4), получено точное решение контактных задач теории упругости о чистом сдвиге штампом (в обш,ем случае деформируемым) цилиндрического тела, представляющего собой в сечении область, ограниченную координатными линиями ортогональной линейной системы координат на плоскости, коэффициенты Ламе которой удовлетворяют некоторым условиям. Сюда относятся декартовы, полярные, биполярные, параболические, гиперболические и др. координаты. Подробнее в биполярных координатах рассмотрены контактные задачи Qn, Qn для усеченной луночки. Решения задач этого пункта представляют не только самостоятельный интерес, но служат основой для решения контактных задач о внедрении штампов в поверхности таких же тел путем выделения и обращения главных частей ядер соответствующих ИУ.  [c.17]

Наиболее эффективные для численного решения газодинамические модели, описывающие стационарные вязкие течения, основаны на параболических или гиперболических, т.е. неэллиптических системах уравнений. Эти уравнения являются эволюционными по продольной координате, а задача Коши для них является корректной [12-14]. Поэтому их решение может быть найдено быстрыми маршевыми методами за один проход вниз по потоку [4, 5, 8, 12-14]. В дальнейшем эти модели будем называть неэллиптическими, хотя это не означает, что с их помощью нельзя учесть граничные условия для искомых функций на правой границе области течения. Например, параболическая система уравнений модели узкого канала [15] точно описывает стационарное существенно дозвуковое течение вязкой несжимаемой жидкости в цилиндрических трубах постоянного сечения (течение Гагена-Пуазейля). Заданное значение давления в выходном сечении трубы учитывается с помощью интегральной величины - значения массового расхода жидкости через трубу. Передача информации вверх по потоку в неэллиптических моделях учитывается неявно, в данном случае, интегрально.  [c.31]


В данной главе приведены решения скалярных и векторных волновых уравнений для установившихся волновых движений в системах координат, в которых допустимо разделение переменных и которые используются в последуюших главах при изучении дифракционных процессов. Рассмотрены круговая цилиндрическая. эллиптическая цилиндрическая, сферическая, сфероидальная и параболическая цилиндрическая координатные системы. Для первых трех из указанных систем приведены теоремы сложения волновых функций. Даны основные свойства используемых специальных функций. Отметим, что в случае нестационарных процессов в результате применения интегрального преобразования Лапласа по времени волновые уравнения также сводятся к уравнениям Гельмгольца. Следовательно, приведенные в настоящей главе результаты справедливы и для нестационарных задач. Отличие состоит лишь в том, что в нестационарном случае волновые числа будут чисто мнимыми.  [c.28]

В работе [68] приведены системы координат, в которых для уравнения (3.2) можно получить уравнения (3.4) с разделенными переменными. Это прямоугольная, круговая цилиндрическая, сферическая, коническая, параболическая, эллиптическая цилиндрическая, параболическая цилиндрическая, вытянутая и сплющенная сфероидальные, эллипсоидальная и параболои-дальная координатные системы.  [c.48]

Рассмотрим решение уравнения Максвелла (3.256), (3.257) внутри зоны (канавки). Для этого сначала рассмотрим задачу о распространении электромагнитной волны внутри наиравдающей структуры (волновода). Предположим, что сечение вошовода представляет собой область, расположенную между двумя парами кривых, которые являются координатными линиями одной из криволинейной системы координат эллиптической, параболической, цилиндрической жлж декартовой. Название системы координат совпадает с названием кривой второго порядка, которая описывает сечение направляющей стру , ,ур Стецщ направляющей структуры будем считать идеально проводящими. Введем ортогональные криволинейные координаты по формулам X = х и, и), / = у и, ю).  [c.196]

На основе точных решений интегральных уравнений первого рода, содержаш,их в качестве ядер эллиптические функции Якоби (см. 1.4), получено точное решение контактных задач теории упругости о чистом сдвиге штампом (в общем случае деформируемым) цилиндрического тела, представляюшего собой в сечении область, ограниченную координатными линиями ортогональной линейной системы координат на плоскости, коэффициенты Ламе которой удовлетворяют некоторым условиям [168]. Сюда относятся декартовы, полярные, биполярные, параболические, гиперболические и другие координаты. Аналогичные задачи в случае полосы изучались в работе [44], здесь же предложена схема построения точного решения рассматриваемых задач путем конформного отображения полосы на конечную область.  [c.153]

Расчет давления пород. При штольнеобразных выработках свод евтествен-ного равновесия можно допустить (по Про-тодьяконову) цилиндрическим и в сечении своем ограниченным параболой. В этом случае принимается, что на крепь давит своим весом параболический объем породы, имеющий своим основанием потолок выработки и высотою полупролет выработки, деленный на Коэф. крепости пород кровли. Уравнение параболы при начале координат в вершине  [c.418]


Смотреть страницы где упоминается термин Параболические цилиндрические координаты : [c.256]    [c.285]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.574 , c.575 ]



ПОИСК



Координаты параболические

Координаты цилиндрические



© 2025 Mash-xxl.info Реклама на сайте