Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способы оценки времени до разрушения при

Одним из методов определения склонности к МКК, не получивших пока широкого распространения, является способ замера глубины разрушений с помощью прибора, регистрирующего распространение вихревых токов в испытуемом и контрольном образце. Этот способ не нарушает требований ГОСТа, но позволяет в пять раз сократить время испытания в стандартном растворе и условно дать количественную оценку интенсивности разрушений от МКК, если они имеются. С помощью градуировочной кривой (рис. 21), полученной на серии контрольных образцов, можно достаточно точно определить глубину межкристал-литного разрушения испытуемого материала [23 [.  [c.63]


Наряду с теорией длительного разрушения (накопления повреждений и трещинообразования) существует и другой способ оценки долговечности элемента материала, не имеющий прямого отношения ни к физическому разрушению, ни к потере устойчивости равномерного вязкопластического деформирования с локализацией деформаций в виде шейки или вздутости (см. п. 1.3). Долговечность при ползучести, протекающей при постоянном условном напряжении, рассматривается как время, за пределами которого этот деформационный процесс, описываемый определенным уравнением механических состояний, теоретически не может продолжаться. Критический момент можно определить различными способами, в зависимости от применяемого типа уравнения механических состояний. Традиционный и простейший подход состоит в следующем (ср. [71, 991). Допустим, что процесс ползучести при линейном напряженном состоянии в условиях постоянства растягивающей силы (или иначе — постоянства условного напряжения) описывается уравнением (2.52). Истинное напряжение изменяется при этом по закону  [c.108]

Существует несколько способов оценки склонности сплавов к коррозионному растрескиванию йод напряжением. Ее можно определять по времени, необходимому для появления первой трещины или полного разрушения образца, а также путем сравнения изменения механических свойств в напряженном и ненапряженном состояниях за время испытания.  [c.69]

Постепенное повреждение артиллерийских стволов под действием напряжений. Незначительное количество разрушений во время второй мировой войны объясняется эффективностью методов контроля орудий с целью предотвращения постепенного их разрушения под действием напряжений. До появления орудий с высоким уровнем напряжений стволы работали при относительно низких напряжениях и обычно изнашивались, прежде чем трещина в канале ствола успевала достаточно развиться и вызвать разрушение. Однако специальные испытания орудий с высоким уровнем напряжений показали, что возникновение и постепенный рост трещины может вызвать разрушение орудий, прежде чем произойдет заметный износ и эрозия. Поэтому было необходимо найти новый критерий для орудийных стволов, чтобы заменить служившие долгое время надежные стандарты по износу канала ствола. Во время второй мировой войны не существовало способа оценки степени повреждения ствола в полевых условиях вероятно, не было времени, чтобы его разработать. Поэтому необходимо было установить допустимое количество выстрелов.  [c.274]

В настоящее время существует большое многообразие способов оценки стойкости материала против замедленного разрушения в сероводородсодержащих средах. Испытания проводятся как в средах для сравнительных ускоренных испытаний, так и в производственных или рабочих средах. Последние дают непосредственные данные о коррозионной стойкости образцов-свидетелей в эксплуатационной среде и обеспечивают высокое соответствие условий испытаний рабочим параметрам, но в связи со значительной продолжительностью не позволяют оперативно оценивать влияние тех или иных конструктивных и технологических факторов. Поэтому в практике широко используют ускоренные методы коррозионных испытаний [27, 32].  [c.32]


Гладкие образцы при испытаниях на КР позволяют одновременно в одном испытании наблюдать ряд явлений, т. е. начало возникновения и распространения трещин, и это может быть преимуществом данного способа в случае применения для практических целей. В тех случаях, когда начало возникновения трещины является определяющим этапом разрушения, гладкие образцы успешно имитируют условия службы конструкций, не имеющих трещин (дефектов). К тому же богатейший материал, накопленный при испытаниях на гладких образцах за последние несколько десятилетий, для большинства высокопрочных алюминиевых сплавов находит в настоящее время широкое применение. Этот материал, полученный при использовании методов испытаний на гладких образцах, имеет большое значение при разработке сплавов, так как новые сплавы могут быть сопоставлены непосредственно с хорошо известными сплавами, уже применяемыми на практике. Однако сплавы одинаково хорошо могут быть распределены по сопротивлению к КР при оценке по скорости роста трещины при известных уровнях К и надо полагать, что такой метод испытаний будет в конце концов предпочтительным перед методом испытаний на гладких образцах для многих видов применения.  [c.186]

Различные металлы по-разному противостоят эрозии. В настоящее время не существует расчетных методов оценки эрозионной стойкости материалов. При экспериментальном лабораторном исследовании эрозионной стойкости материалов применяются обычно следующие способы 1) удар струи жидкости по вращающимся образцам, 2) удар капель или струи жидкости (влажного пара) по неподвижным образцам, 3) протекание жидкости с кавитацией у поверхности образца (кавитационные сопла, щелевые установки), 4) испытания образцов на магнитострикционном вибраторе, 5) исследования погруженных в жидкость неподвижных образцов с помощью кольцевого возбудителя колебаний жидкости у поверхности образца. Интенсивность эрозионных разрушений образцов из одинаковых материалов зависит от выбранного способа испытаний. Однако если испытать несколькими способами группу различных материалов, то они по своей эрозионной стойкости расположатся практически в одинаковой последовательности независимо от способа испытаний. Это правило объясняется общностью природы эрозионного разрушения при ударах капель или струй жидкости и при кавитации в жидкой среде и может быть использовано для свободного выбора удобного в данных конкретных условиях способа испытаний. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые ста-86  [c.86]

Для ориентировочной оценки относительного изменения долговечностей при одно- и двухчастотном нагружениях рассмотрим выражения чисел циклов до разрушения в указанных случаях. Примем, что и in — время до разрушения при действии одной и одновременно двух нагрузок соответственно. В общем случае Ф iii> так как энергия, необходимая для разрушения металла механическим способом, —величина постоянная. Предельная, накопленная до разрушения энергия а время дости-  [c.61]

Под влиянием изменения структуры стали, протекающего, в зависимости от температуры и времени отпуска, существенно изменяются сопротивление сталей хрупкому разрушению и вязкость, каким бы показателем, пригодным для оценки, их не характеризовали. На рис. 21 показано изменение показателей вязкости инструментальных сталей, полученных различными способами, в зависимости от температуры и продолжительности отпуска. Естественно, что предел текучести сталей (твердость) зависит также от этих структурных изменений, хотя и не в такой мере, как вязкость. На основе экспериментальных результатов для каждой стали можно подобрать такую оптимальную комбинацию параметров термообработки (температура и продолжительность аустенитизации, температура и продолжительность отпуска), при которой показатель, характеризующий структуру стали, сложившуюся под ее воздействием (будь то удельная работа разрушения или вязкость разрушения), будет максимальным и предел текучести также будет наибольшим. В этом состоянии распределение выделений по размеру и по объему стали сравнительно равномерно и за время заданного срока службы инструмента это распределение, а также распределение легирующих между матрицей и карбидами остаются практически неизменными.  [c.42]


Несомненно, лабораторные испытания надрезанных образцов при разных способах нагружения имеют большое практическое значение, приближая условия испытания к эксплуатационным, например при выборе нужной стали или сплавов для болтов [5], оценки чувствительности к отверстию для листовых материалов и т. д. Однако возможности получения обобщенных закономерностей по разрушению на основе таких испытаний меньше, чем на основе испытания образцов с трещиной. В то же время и при изучении чувствительности к трещине иногда применяют надрезанные образцы. При этом надрез, изменяя условия на контуре испытуемого тела, предопределяет зону и ускоряет начало развития разрушения, вызывая уменьшение докрИтической области деформации, способствуя оценке критических механических характеристик и тем повышая чувствительность испытаний. Чем острее и относительно глубже надрез, тем больше его действие приближается к влиянию трещины. Однако для материалов с низкой локальной пластичностью испытание образцов даже с острым надрезом не заменяет испытаний образцов с трещиной. Чувствительность материала к трещине оценивают по характеристикам разрушения. В оценку чувствительности к надрезу включают, кроме характеристик разрушения, также способность данного материала к пластической деформации (еще до развития разрушения) в стесненных условиях вблизи вершины надреза.  [c.105]

В последнее время для определения вязкостных свойств деталей все чаще применяется /-интеграл. Выбор метода механики разрушения для оценки снятых в процессе эксперимента кривых нагрузка — расширение надреза, а также выбор температуры, при которой следует проводить испытание одним из способов механики разрушения (рис. 42), зависят от величины предела текучести материала, толщины образца или детали или от предусмотренной температуры эксплуатации.  [c.80]

Несмотря на то, что в настоящем обзоре не рассматриваются работы по теории разрушения в условиях ползучести, отметим только статью Ю. Н. Работнова [133], в которой рассмотрена кинетика кратковременного разрушения в условиях ползучести в окрестности концентратора напряжений. Автор приходит к заключению, что при оценке длительной прочности изделий, работающих при умеренной температуре длительное время, предложенный им упрощенный способ расчета напряжений позволяет получить только качественный результат. В этом случае, по мнению автора, оправданным является обычный подход, основанный на определении напряжений в окрестности концентратора и оценке длительной прочности по эквивалентному напряжению.  [c.250]

Повреждаемость материала наряду с пластическим течением и ползучестью представляет собой процесс, протекающий в материале под действием напряжений и температур и приводящий, в конечном счете, к разрушению. В настоящее время еще не найдены прямые способы измерения и оценки степени повреждения Я в процессе работы. Условно принимают, что для начального неповрежденного состояния Я = О, а в момент разрушения Я = 1, т. е. степень повреждения может меняться в пределах от О до I. Величина  [c.101]

Существуют различные показатели коррозии (табл. 3), которые используются с учетом вида коррозии, характера повреждений и специфических требований данной отрасли промышленности к металлу. Скорость общей равномерной коррозии металлов и сплавов (химической и электрохимической) поддается оценке путем наблюдения за ростом и разрушением пленок из продуктов коррозии (гравиметрические, оптические, электрические методы испытаний) (рис. 5). Используются весовой (/(в) и глубинный (П) показатели скорости коррозии н реже — объемно-газовый показатель (см. табл. 3). Для оценки скорости развития локальных коррозионных повреждений применяют разнообразные методы испытаний. Широко используется механический показатель, а также электрический и резонансный показатели. Существуют и другие показатели. Оценивают, например, время до появления выраженной трещины в напряженном металле, контактирующем с агрессивной средой. Проводятся замеры контактных токов между различными металлами в жидких электролитах с целью определения скорости контактной коррозии. Широко применяются способы микрографического обследования образцов после коррозионных испытаний с промером глубины питтин-гов.  [c.125]

Установление общих кинетических закономерностей термоактивированного трещинообразования и границ стадий (предельных состояний) позволило сформулировать способы определения длительности стадий и тем самым, диагностируя состояние нагруженного материала, прогнозировать время до его разрушения. При этом количественно решены задачи определения реального запаса прочности, долгосрочной оценки времени формирования кластера заданного размера и очага разрушения, оперативной фиксации смены стадий и оценки скорости термоактивированного роста магистральной трещины.  [c.46]

Для оценки склонности материала к коррозионному растрескиванию проводят испытания образцов в данной коррозионной среде а) при постоянном растягивающем напряжении б) при постоянной величине деформации или в) при постоянной скорости деформации. Чаще всего используют первые два способа нагружения. Если в рабочих условиях возможно изменение состава среды, для испытаний следует использовать среду с максимальным содержанием коррозионно-активных веществ. Должны учитываться также особенности контакта среды и материала в рабочих условиях. Методы испытаний можно разделить на две группы. Первая группа предполагает испытания в коррозионной среде нагруженных гладких образцов для определения зависимости времени до разрушения образца от величины напряжения а. Критерием стойкости металла по отношению к коррозионному растрескиванию может служить время до разрушения образца при пороговом напряжении Стд. ниже которого не происходит растрескивания при еколь угодно длительных испытаниях. При 28  [c.28]


В настоящее время наряду с вышеизложенной методикой практикуется оценка нагревостойкости по температурным индексам (ТИ), которые определяются путем нахождения изменения отдельных характеристик в процессе изотермического старения образцов. В рекомендациях МЭК 493, МЭК 216, МЭК 15В, в стандарте ASTM (метод D3251) и других документах излагаются способы определения ТИ. Все они сводятся к нахождению времени изотермического старения образцов до достижения контролируемым параметром заданного уровня, который в литературе называют критерием конечной точки. По полученнцм данным строят график нагревостойкости относительно выбранной контролируемой характеристики, по крайней мерс при трех значениях температур, превышающих рабочую температуру. Он представляет собой линейную зависимость логариф-м,1 времени до разрушения образца или до достижения заданного уровня контролируемой  [c.447]

Ранее этот метод использовали для сравнительного изучения влияния таких переменных факторов, как состав н структура сплава или добавки ингибиторов к коррозионным средам, а также для исследования комбинированного влияния состава сплава и коррозионной среды на разрушение в тех случаях, когда в лабораторных условиях не удавалось обнаружить растрескивания образцов прн нспытаннн по методу постоянной нагрузки или постоянной деформации. Таким образом, испытания при постоянной скорости деформации — относительно жесткий вид лабораторных испытаний в том смысле, что при нх применении часто облегчается коррозионное растрескивание, в то время как другие способы испытания нагруженных гладких образцов не приводят к разрушению. С этой точки зрения рассматриваемый способ испытания подобен испытаниям образцов с предварительно нанесенной трещиной. В последние годы многие исследователи поняли значение испыта-Н1и"1 с использованием динамической деформации и теперь представляется, что испытания этого типа могут применяться гораздо более широко благодаря своей эффективности, быстроте и более надежной оценке исследуемых вариантов. На первый взгляд, может показаться, что испытания образцов на растяжение при малой скорости деформации до их разрушения в лабораторных условиях имеют небольшое сходство с практикой разрушения изделий прн эксплуатации. При испытаниях по методу постоянной деформации и методу постоянной нагрузки распространение трещины также происходит в условиях слабой динамической деформации, в большей или меньшей степени зависящей от величины первоначально заданных напряжений. Главное заключается во времени испытаний, в течение которого зарождается трещина коррозионного растрескивания, и в структурном состоянии материала, определяющем ползучесть в образце. Кроме того, появляется все  [c.315]


Смотреть страницы где упоминается термин Способы оценки времени до разрушения при : [c.215]    [c.172]    [c.22]   
Повреждение материалов в конструкциях (1984) -- [ c.0 ]



ПОИСК



Время до разрушения

Способы оценки времени до разрушения при совместном действии ползучести и усталости



© 2025 Mash-xxl.info Реклама на сайте