Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электролиз водных растворов меди

Экстракция 65, 182, 224 Электролиз водных растворов меди 170  [c.439]

Электролиз водных растворов Медь, железо, свинец, олово 0,1—30 Пористые подшипники, щетки электромашин, контакты, магнитные материалы  [c.104]

Электролиз. Электролиз водных растворов является наиболее распространённым методом для изготовления медных порошков. При электролизе меди осадок отлагается на катоде непосредственно в порошкообразном виде. Отложению на катоде порошкообразного, легко удаляемого и дисперсного осадка благоприятствуют малая концентрация ионов металла в исходном растворе, низкая температура и высокая плотность тока. Регулируя эти условия, а также циркуляцию электролита, с повышением которой уменьшается дисперсность порошка, можно получить продукцию с желаемой характеристикой.  [c.531]


Электролитическое рафинирование меди (электролиз водных растворов)  [c.443]

Электролитическое рафинирование меди (электролиз водных растворов). ......................443  [c.9]

Технологически более просто получать порошки электролизом водных растворов. Катодный осадок извлекают из электролитической ванны, промывают в холодной воде, снимают с катода и при необходимости подвергают размолу. Этим методом изготавливают порошки железа, меди, никеля и других металлов.  [c.18]

Сплавы индия с таллием обычно получают методом прямого сплавления. В работе [28] описан метод получения покрытий из этих сплавов на меди электролизом водных растворов их солей.  [c.496]

Электролиз водных растворов и расплавленных сред — второй по значению (после способа восстановления) способ можно получать порошки почти всех металлов получаемые порошки являются весьма чистыми благодаря очистке от примесей в процессе электролиза, однако стоимость получаемых порошков очень высока из-за низкой производительности и больших затрат электроэнергии получают порошки железа, никеля, меди, тантала, титана, тория, бериллия, серебра, хрома, марганца и различных сплавов на основе железа, никеля, меди.  [c.14]

Производство металлических порошков методом электролиза водных растворов в настоящее время с успехом конкурирует с другими методами, особенно в области получения таких технически важных металлов, как медь и железо.  [c.100]

Защитными и одновременно декоративными являются никелевые, хромовые, многослойные из меди—никеля—хрома, серебряные, золотые покрытия. Нанесение этих металлов в основном производится гальваническим методом, основанным на электролизе водных растворов солей металла, предназначенного для покрытия. Защищаемый металл помещают в ванну в качестве катода, а анодом является металл, предназначенный для покрытия.  [c.210]

В ряду напряжений легкие металлы расположены значительно ниже водорода и их не удается выделить электролизом из водных солей по аналогии с медью, никелем и цинком, так как на катоде при электролизе водных растворов солей алюминия, магния и других легких металлов выделяется водород. Поэтому многие легкие металлы получают электролизом расплавленных солей, не содержащих ионов водорода. Кроме того, электроотрицательный характер легких металлов предъявляет очень высокие требования к чистоте всех материалов, поступающих на электролиз. Присутствующие в этих материалах примеси или комплексы  [c.365]

Электролизом водных растворов получаются. порошки меди, железа, кобальта, никеля, хрома, олова, свинца, серебра. Порошки металлов, осаждение к-рых в водных растворах затруднительно, получают электролизом расплавленных солей при темп-рах ниже точки плавления металла. Таким путем можно получать порошки W, Мо, Сг, Т1, Та, и и других металлов. Существенной трудностью при электролизе расплавленных сред является отделение металлич. порошка от солей.  [c.394]


Технологически более просто получать порошки электролизом водных растворов. Катодный осадок извлекают из электролитической ванны, промывают в холодной воде, снимают с катода и при необходимости подвергают размолу. Этим методом изготавливают порошки железа, меди, никеля и других металлов. Электролизом расплавов солей получают порошки тугоплавких металлов, таких как цирконий, хром, титан, тантал н другие, которые невозможно выделить из водных растворов ввиду их высокого сродства к кислороду. Электролитически можно также получать порошки сплавов способом совместного осаждения компонентов сплава на катоде.  [c.68]

Электролитическое получение железного порошка из водных растворов становится более выгодным при комплексной гидрометаллургической переработке некоторых видов сырья цветных металлов (меди, никеля) с попутным получением чистых растворов железных солей. Некоторое количество железных порошков в США и Японии производят электролизом водных растворов.  [c.150]

Тамман [12] подвергал электролизу водные растворы сульфатов меди и кадмия при различных соотношениях металла в растворе и при разных плотностях тока и измерял потенциалы полученных сплавов по  [c.131]

Закон электролиза. Вещества, растворы которых проводят электрический ток, называются электролитами. Вода и кристаллы хлорида меди практически не проводят электрический ток. Раствор хлорида меди в воде является хорошим проводником. При прохождении электрического тока через водный раствор хлорида меди у положительного электрода, называемого анодом, выделяется газообразный хлор. На отрицательном электроде, называемом катодом, выделяется медь.  [c.163]

Получение композиционного материала на основе меди, содержащего в качестве упрочнителя вольфрамовую проволоку, описано в работе [87]. По удельной прочности этот материал значительно уступает многим другим композициям и представляет интерес более как модельный материал для исследования напряженного состояния, микромеханики разрушения, чем как конструкционный. При содержании 40 об. % проволоки материал имел прочность, равную 134 кгс/мм , и плотность 13 г/см . Обычный электролит для осаждения медных покрытий содержит водный раствор сернокислой меди (188 г/л) и серной кислоты (74 г/л). Электролиз ведется при комнатной температуре при плотности тока 0,24 А/дм  [c.183]

Электролиз Осаждение металлического порошка из водного раствора соли или ее расплава при помощи постоянного электрического тока Медь, железо, кобальт, хром и некоторые тугоплавкие металлы Высокая чистота металла, форма частиц преимущественно дендритная Изделия ответственного назначения и ряд тугоплавких металлов  [c.322]

Для обеспечения этого условия можно применить в узле трения коррозионно-стойкий сплав, содержащий медь или металлоплакирующий смазочный материал в виде водного раствора соли меди. Необходимым источником энергии для осуществления процесса осаждения медного слоя является ТЭДС. Процесс осаждения меди на поверхностях трения имеет общую природу с электролизом. Возникновение ТЭДС объясняют явлением Зеебека, согласно которому Б замкнутой электрической цепи возникает ТЭДС, если температура на контактах разная.  [c.306]

Электролиз — пропускание постоянного тока через расплав солей или водный раствор металла металл в виде порошка или крупного осадка оседает на катоде. Применяют для получения порошков меди, титана и др.  [c.92]

Процесс электролиза основан на следующем принципе. В ванну с 12—16-процентным водным раствором медного купороса в серной кислоте погружают две медные пластины, одну из которых соединяют с положительным полюсом (анодом), а другую — с отрицательным (катодом). При пропускании тока анод будет растворяться, а ионы меди осаждаться на катоде.  [c.179]

Процесс электролиза выполняется следующим образом ванну с 12—16%-ным водным раствором медного купороса в серной кислоте погружают две медные пластины, одну из которых соединяют с положительным полюсом (анодом), а другую — с отрицательным (катодом). При пропускании тока анод будет растворяться, а ионы меди осаждаться на катоде. Аноды отливаются из рафинированной огневым способом или из черновой меди в виде плит весом 200—250 кг, размером 0,9 X 0,9 м и толщиной 40—50 мм. В качестве катодов берутся тонкие листы (0,5—0,7 мм) электролитической меди, на которых в течение 10—12 дней осаждается до 100 кг металла. Расход электроэнергии составляет 250—350 квт-ч на 1 т катодной меди.  [c.153]


Электролиз расплавленных солей подчиняется тем же основным законам, которые выведены для электрохимии водных растворов. Ток через расплавленные соли проходит так же, как и в водных растворах электролитов, с помощью ионов, поэтому электролиз солевых расплавов подчиняется законам Фарадея. Электропроводность солевых расплавов при высоких температурах несколько выше, чем электропроводность водных электролитов при комнатной температуре. Положение металлов в ряде напряжений для расплавленных солей [364] и в водных электролитах принципиально мало различается между собой. Как и в водных растворах, наиболее отрицательные значения электродных потенциалов имеют щелочные и щелочноземельные металлы более положительные потенциалы имеют сурьма, висмут, медь, ртуть и серебро. Электродные потенциалы одних и тех же металлов в расплавленных хлоридах, бромидах и йодидах сравнительно мало отличаются. Это объяснимо, если считать, что электродные потенциалы металлов в основном определяются, электронным строением атомов, т. е. положением их в периодической системе элементов Д. И. Менделеева. Как и в водных электролитах, электроосаждение металлов из солевых расплавов протекает с поляризацией, однако степень ее значительно меньше, чем в водных растворах. Электролиз расплавленных солей проводится при высоких температурах в электролизерах, обычно имеющих огнеупорную футеровку, диафрагму, отделяющую анодное пространство от катодного. В ряде случаев необходима герметизация электролизера или защитная атмосфера.  [c.102]

Медь (из кислой медной ванны) п серебро (из цианистой ванны серебрения) осаждаются в обычной области плотности тока со 100°/о-ным выходом по току. В этих ваннах можно достичь совместного с металлом выделения водорода, если при соответствующих условиях электролиза будет превзойдена область предельной плотности тока. Это наблюдается в ваннах предварительного серебрения. В этом случае поляризационные кривые располагаются согласно рис. 16,а, причем А означает металл, В — водород. Случай, при котором А является водородом, а В — металлом в применяемых для осаждения металла водных электролитах, не встречается, так как для выделения водорода из водных растворов нет предельной плотности тока. Для разряда ионов водорода всегда имеются большие количества воды.  [c.42]

Если через водный раствор солей металла пропускать постоянный ток, то они не остаются химически неизменными, как металлические проводники (например, проводник из меди). В зависимости от состава раствора соль разлагается при этом на газообразные, твердые и жидкие составные части. Это и есть электролитическое разложение соли, т. е. электролиз ее.  [c.5]

Тамман (О. Таттапп) подвергал электролизу водные растворы сульфатов меди и кадмия при различных соотношениях металла в растворе и при различных плотностях тока и измерял потенциалы полученных сплавов по отношению к кадмию. При этом было установлено, что с уменьшением содержания в электролите меди, осадки становятся по цвету менее похожи на медь, а также уменьшается потенциал сплава по отношению к кадмию. Такое уменьшение разности  [c.88]

Производство металлических порошков методом электролиза водных растворов в настоящее время с успехом конкурирует с другими методами, особенно в области получения такого технически важного металла, как медь. Это объясняется рядом преимуществ электролиза по сравнению с другими методами производства порошков. К числу этих преимуществ прежде всего можно отнести высокую чистоту получающихся порошков и хорошие технологические характеристики (прессуе-мость и спекаемость). При использовании этого метода  [c.128]

Электролитическое рафинирование проводят для получения чистой от примесей меди (99,95 % Си). Электролиз ведут в ваннах, покрытых изнутри винипластом или свинцом. Аноды делают из меди огневого рафинирования, а катоды — из листов чистой меди. Электролитом служит водный раствор USO4 (10—16 %) и HaS04 (10—16 %). При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди  [c.49]

К химическим методам получения порошков относится восстановление оксидов и солей металлов твердыми или газообразными восстановителями, диссоциация карбонилов и неустойчивых соединений, металлотермия. Большую rpjoiny порошков — олово, серебро, медь и железо — получают методами электролитического осаждения металлов в виде порошка из водных растворов солей, а также электролизом расплавленных сред (тантал, ниобий, уран и др.).  [c.781]

К химическим методам получения порошков относят такие методы, которые связаны с изменением химического состава исходного сырья или его агрегатного состояния 1) восстановление окислов металлов из окалины, воздействием на нее водородом или твердым углеродом при высокой температуре (железо, медь, никель, кобальт, вольфрам, молибден и др.), 2) термическая диссоциация карбонилов [химических соединений типа Ре(С0)5, N ( 0)4 и др. ] при давлении 30—40 МнЬл (300—400 кПсм ) и температуре 200—300° С (железо, никель, кобальт), 3) электролиз (осаждение) металлических порошков из водных растворов солей и расплавленных сред соответствующих металлов (олово, серебро, медь, железо, тантал, ниобий, цирконий и т. д.).  [c.434]

Кроме бестокового осаждения, употребляют также и обычный электролиз. Тогда и свинец и полоний могут осаждаться или на катоде в виде металлов, или на аноде в виде высших окислов, в зависимости от состава раствора и приложенной разности потенциалов [44, 45, 16, 30, 34]. Висмут большей частью осаждается на катоде [26, 33, 38]. Недавно было обнаружено [10, 3, 32, 33, 34], что протоактиний поддается электроосаждению из водных растворов как на катоде, так и на аноде, однако неясно, в какой химической форме он при этом получается. Радий, который всегда является основанием, был выделен Кюри и Дебьерном электролитически в виде амальгамы на ртутном катоде. Литературу об электролитических работах с макроскопическими количествами урана, радия и тория см. [33]. Такие искусственные радиоэлементы, как медь [56, 58], кадмий [61] и индий [47], легко поддаются электроосаждению. Электролиз радиожелеза в присутствии неактивного железа в качестве носителя использовался при работе с радиоактивны. и индикаторами в биохимии [57, 23]. Наконец, электролиз был применен и к новому элементу 43 (Тс) [19]. Как и в бестоковом осаждении, перемешивание ускоряет процесс использование вращающегося катода [18] было рекомендовано при работе с микроколичествами [9].  [c.30]


Электрометаллургический заключается в вы- плавке металлов и сплавов в дуговых, индукционных и других электрических печах. Кроме того, некоторые металлы получают путем электролиза из расплавов их химических соединений (например, получение алюминия из глинозема А12О3) или же из водных растворов солей (например, рафинирование, т. е. получение чистой меди из раствора сернокислой меди СиЗО .  [c.17]

Электролитическое рафинирование обеспечивает получение наиболее чистой, высококачественной меди. Электролиз проводят в дере- вянных или бетонных ваннах, футерованных листовым свинцом, пластмассами и другими кислотостойкими материалами. В качестве электролита используют водный раствор серной кислоты (10—16%) и сернокислой меди USO4 (10—16%). Анодами являются пластины размером 1 X 1 м толщиной 40—50 мм, отлитые из рафинируемой меди. В качестве катодов используют тонкие листы (0,5—0,7 мм), изготовленные из электролитической меди,  [c.73]

Электролитическое рафинирование проводят с целью получения чистой от примесей меди (до 99,95% Си). В железобетонные ванны 1 (рис. 38), облицованные изнутри винипластом 2, подвешивают поочередно плиты 4 из меди после огневого рафинирования толщиной 30—45 мм (аноды) и тонкие листы 5 электролитической меди (основы), которые в процессе электролиза служат катодами. В ванне циркулирует электролит 7 при температуре 55—65° С. Электролит представляет собой водный раствор Си504 (10—16%) и Н2504 (10—16%). При прохождении через всю цепь постоянного электрического тока по направлению от анода через электролит к катоду происходит растворение меди с анода и осаждение меди на катоде по реакции  [c.96]


Смотреть страницы где упоминается термин Электролиз водных растворов меди : [c.342]    [c.154]    [c.503]    [c.218]    [c.94]    [c.316]    [c.316]    [c.328]   
Металлургия цветных металлов (1985) -- [ c.170 ]



ПОИСК



Медиана

Растворы водные

Электролиз

Электролиз водных растворов

Электролитическое рафинирование меди (электролиз водных растворов)



© 2025 Mash-xxl.info Реклама на сайте