Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газ технологический горючий

На многих предприятиях, в том числе на заводах черной и цветной металлургии, нефтеперерабатывающих, "химических, а также заводах ряда других отраслей промышленности, в процессе производства выделяются горючие газы, которые, как правило, используются на этих же предприятиях в качестве топлива. Как видно из табл. 1.1, на металлургических заводах доля технологических горючих газов составляет более 50% общего годового потребления топлива заводом, а по абсолютным цифрам выход горючих газов на одном заводе эквивалентен нескольким миллионам тонн условного топлива в год. Поэтому возможно полное использование горючих технологических газов имеет большое значение. Однако эффективное их использование связано с целым рядом серьезных трудностей. Эти газы, как правило, токсичны, содержат много пыли и вредных веществ.  [c.149]


Предварительная термическая подготовка топлив в технологической части позволяет существенным образом воздействовать на образование и уменьшение выхода окислов азота. Это достигается, во-первых, за счет того, что в топку парогенератора направляется очищенный горючий газ, полученный из исходного топлива. Выполненные экспериментальные измерения показывают, что сжигание высокотемпературных продуктов газификации снижает концентрацию окислов азота в продуктах сгорания парогенератора в 1,5—2 раза по сравнению с прямым сжиганием жидкого топлива. Вторым важным фактором является возможность изменения температурного уровня в топке за счет предварительного охлаждения получаемых продуктов в системе очистки или за счет сброса дымовых газов технологической части в зону горения энергетического парогенератора (см. рис. 1-7—1-9).  [c.82]

В разделе дана классификация и приведены разнообразные справочные сведения по тепловым и материальным отходам технологических систем. Представлены установки для регенеративного использования теплоты отходящих газов. Существенно обновлен материал, посвященный котлам-утилизаторам и теплоиспользующим элементам энерготехнологических агрегатов. Даны также материалы по использованию избыточного давления отработавших газов, использованию горючих газов технологических агрегатов, теплоты от охлаждаемых элементов промышленных печей. Приведены данные по конструкциям ограждений, по огнеупорам и теплоизоляционным материалам, а также рекомендации по их выбору.  [c.8]

Резаки для кислородной резки Исполь- зуемый горючий газ Технологические параметры Изготови- тель  [c.371]

Мундштук Горючий газ Технологические параметры  [c.374]

Иногда в отходящих газах технологических установок содержатся горючие составляющие. Для рационального использования таких отходов предусмотрена камера дожигания. На рис. 76 приведена схема ПОГ, работающего на отходящих газах, содержащих сероводород. Дожигание сероводорода производится в цилиндрической камере, оборудованной двумя стабилизирующими горение решетками. После камеры дожигания газы проходят два пучка дымогарных труб, которые образуют испарительную поверхность парогенератора. В процессе охлаждения продуктов сгорания в дымогарных трубах происходит конденсация серы. Для облегчения стока серы дымогарные трубы имеют небольшой уклон по ходу газов. Отвод серы производится из промежуточной (между первым и вторым испарительным пучком) и выходной за вторым пучком) камер. В таком парогенераторе при расходе  [c.135]

Б. Вспомогательные материалы, затрачиваемые при изготовлении заданной продукции, но не входящие в ее состав. Эта группа материалов включает а) флюсы для дуговой и газовой сварки б) газы и горючие материалы для газо-электрической и газовой сварки и для газовой резки в) технологическое топливо г) смазочные и обтирочные материалы и т. п.  [c.205]


Дано обоснование преимуществ применения камерно-вихревых газо-воз-душных горелок для автогенной обработки металлов и пластмасс за счет увеличения скоростных напоров продуктов внутрикамерного горения пламени. Рассмотрены горелки и принципиальные особенности камер сгорания и требования, предъявляемые к их конструктивному выполнению. Описан испытательный стенд для определения скоростных напоров газовых потоков. Приведены кривые распре.деления скоростных напоров в объеме камеры сгорания и факела продуктов горения пламени за выходным соплом, характеризующие газодинамику камерно-вихревого горения газо-воздушных горючих смесей. Определены скоростные напоры газовых потоков для выбора конкретных технологических процессов газопламенной обработки металлов и пластмасс.  [c.197]

Если отходящий из технологических установок газ не содержит горючих компонентов, то такой котел горелочных устройств не имеет. Эти котлы работают с естественной или принудительной циркуляцией и имеют практически все детали описанных выше котельных агрегатов.  [c.157]

В котле-утилизаторе не сжигается топливо. В него поступают горючие газы (продукты сгорания топлива) из другого технологического агрегата, например плавильной или нагревательной печи. Именно в топке этого агрегата и сжигается топливо, часть теплоты сгорания которого используется в самом агрегате, а оставшаяся часть в котле-утилизаторе.  [c.216]

В химической технологии горючие газообразные и жидкие ВЭР сжигаются либо самостоятельно, либо в смеси с органическим топливом (когда они сильно забалластированы) в топочных устройствах. Получающиеся в них газообразные продукты сгорания высокой температуры в дальнейшем используются для обогрева технологических аппаратов, для получения пара в котлах-утилизаторах и, наконец, для получения холода в холодильных установках. Тепловые ВЭР используются для непосредственного обогрева технологических аппаратов и машин, для выработки пара в котлах-утилизаторах и холода в холодильных установках. ВЭР избыточного давления используются в расширительных машинах, предназначенных для привода компрессоров, насосов и электрических машин или в детандерах для охлаждения газов или получения холода.  [c.327]

Если отходящий из технологических установок газ не содержит горючих компонентов, то такой коте горелочных устройств не имеет. Эти  [c.180]

У газовой турбины 4, компрессора 2 для горючего газа, воздуходувки 5, компрессора для воздуха 6 и пускового устройства 7 имеется одни общий вал. Для доменных цехов разработана простая схема ГТУ с воздушной турбиной, которая несколько превосходит по экономичности установки с газовой турбиной вследствие полного использования тепла воздуха после турбины и значительного уменьшения потерь тепла с уходящими газами. Однако установка получается сложной из-за необходимости создания высокого давления воздуха перед турбиной, поскольку противодавление у турбины должно отвечать технологическим требованиям металлургии.  [c.378]

Наиболее радикальным путем энергоснабжения является изменение самих принципов выполнения технологических процессов. Например, замена мартеновского способа производства стали кислородно-конверторным позволяет так организовать процесс выжигания углерода в чугуне, что для производства стали не только не требуется подводить энергию извне, но и удается получать попутно значительное количество горючих газов. Сейчас этим способом производится лишь 40% выплавляемой стали. Переход на конверторное производство стали позволил бы высвободить свыше 10 млн т высококачественного топлива (преимущественно мазута). Известны многие другие примеры резкого снижения энергоемкости продукции но названному направлению производство аммиака по новой технологии, массовое внедрение сухого способа производства цемента, так называемый двухстадийный метод получения сырья для синтетического каучука и многие другие.  [c.51]


Горючие (топливные) ВЭР — химическая энергия отходов технологических процессов химической и термохимической переработки углеродистого или углеводородного сырья. На практике под горючими ВЭР подразумеваются непосредственно горючие отходы (неиспользуемые или непригодные для дальнейшей технологической переработки), используемые в качестве топлива доменный газ, отходящий газ сажевых печей, абсорбционный газ при производстве мономеров для синтетических каучуков, окись-углеродная фракция в производстве  [c.8]

Аналогично существуют определенные резервы по использованию тепловых и горючих ВЭР на предприятиях химической промышленности. На предприятиях промышленности связанного азота в настоящее время только 60% выхода горючих ВЭР полезно используется в качестве топлива, сжигаемого в энергетических установках, и на технологические нужды предприятий. Из тепловых ВЭР в азотной промышленности полезно используются конвертерные, дымовые, нитроз-ные, хвостовые газы, газы реакций синтеза и др. В 1971 г. за счет использования тепловых ВЭР в утилизационных установках было выработано 34,0 млн. ГДж при возможной выработке около 42,0 млн. ГДж. Б 1975 г. фактическая выработка тепла за счет ВЭР повысилась до  [c.81]

Очевидна также экономическая эффективность, использования горючих и тепловых ВЭР без преобразования энергоносителя. Освоенные схемы использо.вания горючих газов в качестве топлива на энергетические и технологические нужды промышленных предприятий, как правило, требуют дополнительных затрат на аккумулирующие емкости, позволяющие снизить неравномерность выхода горючих ВЭР из агрегатов-источников и затрат в систему их транспорта от источника до потребителя. При этом необходимо учитывать, как правило, незначительные дополнительные затраты, связанные со сжиганием горючих ВЭР в энергетических и технологических установках. Что же касается затрат в системы охлаждения и очистки, то они не должны относиться на утилизацию, так как очистка газов требуется в любых схемах согласно требованиям санитарных норм по охране окружающей среды. Как показывает практика использования горючих газов на промышленных предприятиях, затраты на утилизацию горючих ВЭР составляют не более 10—20% затрат на ископаемое топливо., которое экономится и вытесняется за счет сжигания горючих газов из топливно-энергетических балансов промышленных предприятий.  [c.279]

В 1965 г. завод разработал, изготовил и испытал на стенде головной образец газотурбинной установки ГТТ-3 для подачи воздуха и использования отработанных горючих газов в технологической химической установке, вырабатывающей слабую азотную кислоту для производства сельскохозяйственных удобрений. Принятая технологическая схема с встроенной газовой турбиной явилась результатом творческого содружества работников завода и научно-исследовательского института. Такая схема применена впервые.  [c.484]

ИСПОЛЬЗОВАНИЕ ГОРЮЧИХ ГАЗОВ ОТ ТЕХНОЛОГИЧЕСКИХ АГРЕГАТОВ  [c.76]

Характеристика газов. Горючими газами от технологических агрегатов называют газы, которые могут быть использованы в качестве топлива. Теплота сгорания этих газов должна обеспечивать получение температуры продуктов сгорания выше температуры воспламенения, т. е.  [c.76]

Характеристика основных видов горючих газов от технологических агрегатов приведена в табл. 1.16.  [c.77]

Помещения и наружные установки, где в технологических процессах могут образовываться взрывоопасные смеси горючих газов или наров с воздухом или окислителями, относят к взрывоопасным. Классы взрывоопасных помещении приведены в табл. 7.12.  [c.507]

К первой группе (ив 1) относятся процессы окислительного пиролиза и газификации топлив с целью получения технологических газов, газов-восстановителей и горючих газов. Обычно такие процессы протекают при Ив = 0,2 0,5.  [c.94]

Хотя теплотворная способность метанола в 2,4 раза ниже, чем природного газа, но при сжигании метанола в воздухе могут быть получены все же несколько более высокие температуры дымовых газов, чем при сжигании природного газа. Объясняется это тем, что для сжигания метанола требуется в 2 7 раза меньше воздуха (и балласта в виде азота), чем для природного газа. Метанол в отличие от продуктов переработки нефти — бензина, керосина, мазута и т. п.— имеет стабильный состав (без фракций), что обеспечивает возможность полного его сжигания (без остатков в виде сажи, кокса и золы). Метанол имеет также хорошую текучесть при низких (до 240 К) и нормальной температурах и как жидкое топливо может транспортироваться на большие расстояния с относительно небольшими энергетическими затратами. При термическом же разложении метанола при высоких температурах образуется смесь водорода и окиси углерода — готовая высоконагретая восстановительная среда для многих технологических процессов металлургии и химии. Однако приемлемая стоимость метанола может быть получена при применении энерготехнологического способа производства на основе высокотемпературной газификации углей. Вопросам газификации каменных углей уделяется большое внимание уже давно. Разработано много различных методов термической переработки горючих ископаемых получение горючего газа в результате паровоздушной продувки слоя раскаленного угля, получение водяного газа при парокислородной продувке (процесс Лурги), полукоксование и т. п. Но во всех известных методах горючие газы получаются с относительно низкой теплотворной способностью (4000—8000 кДж/нм ), главным образом из-за содержания больших количеств азота (до 70% по объему)  [c.112]

Несгораемые вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистой теплоты, искр и пламени твердые вещества, жидкости и газы, которые сжигаются или утилизируются в качестве топлива Несгораемые вещества и материалы в холодном состоянии Горючие газы, не имеющие жидкой фазы, и взрывоопасные пыли в таком количестве, при котором из них могут образоваться взрывоопасные смеси в объеме, превышающем 5 % объема воздуха в помещении, и в котором по условиям технологического процесса возможен только взрыв (без последующего горения) вещества, способные взрываться (без последующего горения) при взаимодействии с водой, кислородом воздуха или друг с другом  [c.416]


Расположена в помещении, в котором выделяются горючие газы или пары ЛВЛ<, в таком количестве и с такими свойствами, что они могут образовать с воздухом взрывоопасные смеси при нормальных режимах работы, например при загрузке или разгрузке технологических аппаратов, хранении или переливании ЛВЖ, находящихся в открытых емкостях, и т. п..  [c.417]

Главной отличительной особенностью процесса обжига в шахтных печах является постоянный тесный контакт внутри каждой гранулы пли брикета между частицами сырья и топлива (антрацита или кокса). Здесь процессы горения и технологические реакции взаимосвязаны, поскольку свободному доступу окислителя (воздуха) к отдельно взятой топливной частички препятствуют окружающие ее зерна сырья, кроме того, окислитель в момент контакта с горючим значительно забалластирован углекислым газом технологического происхождения. Установлено, что при работе на черных гранулах (брикетах) сырья — при запрессованном в них тонкоизмолотом топливе, примерно половина технологической двуокиси углерода в результате взаимодействия с топливом восстанавливается до окиси углерода, которая затем сгорает в углекислоту после диффундирования из гранул брикетов, находясь в потоке печных газов и взаимодействуя с кислородом. Определенная часть топлива непосредственно реагирует с кислородом воздуха и сгорает сразу в СОг. Следовательно, в шахтных печах технологические процессы переплетаются с процессами горения и газификации углерода топлива.  [c.519]

Принципиальная схема такого комплекса представлена на рис. 13.7. Теплота, полученная в реакторе /, подводится через промежуточный контур с теплообменником 11 к газификатору 2 и котлу 1 о турбины 9. Газифицируют угол1з водяным паром, подаваемым из отбора турбины. Предварительный подогрев угля I и водяного пара происходит в регенераторе 3. После охлаждения и очистки продуктов газификации в системе 5 горючие газы (Н2, СО, СН4) направляются компрессором 4 к метана-тору 6 в месте потребления. Метани-рование может осуществляться при температуре, целесообразной для обеспечения нужд бытовых и технологических тепловых потребителей. Подог]ревают исходные продукты реакцией метанооб-разования в регенераторе 8. Полученный метан после охлаждения и очистки в системе 7 направляется к потребителям.  [c.403]

Самое широкое использование ядерного горючего не только для электроэнергетики, но и для целей теплоснабжения, а в дальнейшем для ряда высокотемпературных технологических процессов и производства водорода. По данным расчетов, уже в настоящее время использование ядерного горючего в крушгых энергетических установках оказывается экономичным в сравнении с углем, а тем более с природным газом и мазутом в районах, где высококачественное топливо является привозным. Использование ядерного горючего будет возрастать в первую очередь путем сооружения мощных конденсационных атомных электростанций (АКЭС), работающих в базисном режиме, а затем и массового развития атомных ТЭЦ и атомных источников теплоснабжения (A T) в основном для получения горячей воды, а далее и пара.  [c.109]

На долю предприятий химической промышленности приходится около 12% всех энергоресурсов, потребляемых в промышленности страны [78J. Образующиеся в технологических процессах химического производства горючие ВЭР участвуют в основном в покрытии топливной нагрузки предприятий трех подотраслей (где образуется до 99% суммарного выхода горючих ВЭР)—азотной, хлорной и фосфорной. Основное количество утилизируемых горючих ВЭР потребляется на самих предприятиях — около 80%, а оставшаяся часть отпускается на сторону. В качестве топлива используется 84% всех утилизируемых ВЭР. На нетопливные нужды направляется немногим более 16% всего количества фактически утилизируемых горючих ВЭР — в технологии производства аммиака в качестве сырья в печах конверсии, в получении азота и инертных газов.  [c.29]

Кроме тепловых, в нефтехимической промышленности утилизируются также и горючие ВЭР, уровень выхода и использования которых по основным производствам представлен в табл. 2-5. Абсорбционный газ использовался в основном в качестве топлива на технологических установках, а также расходовался на нетопливные нужды, отдавался на сторону, часть его сжигалась в факелах (потери). Горючие отходы жидких углеводородов (мототопливо, кубовые остатки) использовались в основном на нетопливные нужды и передавались на сторону другим потребителям. В перспективе на заводах синтетического каучука для использования жидких горючих ВЭР в качестве топлива предполагается строительство котельных с котлами-испарителями загрязненного конденсата.  [c.80]

Потребность в конкретных видах энергии и режимы ее использовапия в перспективе на промышленном предприятии (узле) практически определяют рациональный выбор типов утилизационного оборудования, обеспечивающего выработку на базе ВЭР энергии таких параметров, которая может быть целиком использована на энергетические, технологические и другие нужды. Потери энергии, связанные с неполным использованием ВЭР (сжигание в факелах горючих газов, неполное использование выработки котлов-утилизаторов из-за отсутствия потребителей и т. п.), необходимо рассматривать как потенциальные энергетические резервы. Потери ВЭР характеризуют уровень рационального ведения энергетического хозяйства предприятия. Поэтому снижение потерь от неполного использовапия ВЭР является одной из центральных задач при планировании развития энергохозяйства. От технико-экономических показателей утили-  [c.230]

Наряду с тепловыми в перспективе будет обеспечено повышение уровня использоваиия и горючих ВЭР (см. табл. 6-3), Основная доля горючих ВЭР будет приходиться на черную металлургию. Несмотря на снижение удельного выхода доменного газа в процессе производства чугуна, суммарные показатели выхода доменного газа будут увеличиваться. Возможным для использования доменного газа в перспективе принят его выход за исключением неизбежных потерь (5%). Предполагается, что потери доменного газа не будут превышать допустимых технологических потерь.  [c.263]

Технологические особенности тепловой обработки материалов и изделий обусловливают окончательный выбор топлива п топочных устройств. Так, например, пламенные печи (мартеновские, стекловаренные, нагревательные) требуют применения топлив, дающих светящееся пламя с большой долей передачи тепла лучеиспусканием. Сжигание производится с подогревом воздуха для получения максимальных температур, поскольку отдача тепла лучеиспусканием примерно пропорциональна разности четвертых степеней абсолютных температур газа и нагреваемого материала. Шахтные печи, где сгорание топлива происходит в среде обрабатываемого материала (пересыпной метод), требуют топлив с малым выходом летучих, сохраняющих прочность при давлении столба шихты в горячей среде, термостойких, с малой реакционной способностью, во избежание появления в отходящих газах большого количества СО и других горючих газов — прямой потери от химической неполноты горения. Наоборот, газогенераторы, назначение которых вырабатывать горючие газы, должны загружаться топливом с большой реакционной способностью. Для облегчения очистки генераторных газов применяемое топливо должно быть маловлажным и небитуминозным. Оно должно быть также достаточно термостойким. Многие недостатки работы тепловых установок являются следствием неправильного выбора топлива, а также плохого хранения его и недостаточного обогащения.  [c.33]

Системы использования газов. Непрерывно выделяющиеся горючие газы при постоянном их количестве и составе без затруднений используются непосредственно как топливо в технологических процессах и для выработки пара или электроэнергии. В черной металлургии, являющейся наибольшим источником горючих газов, доля их в топливопотреблении отрасли составляет примерно 26 %. Потери доменного и коксового газов, возникающие в периоды загрузки печей, составляют 3—5 %.  [c.77]


Система с паровыми аккумуляторами. В системе с пароводяными аккумуляторами (рис. 1.48) горючие газы, периодически поступающие от технологических агрегатов, сжигаются и используются для выработки пара в котлах, работающих в периоды выхода газов Твых с переменной нагрузкой.  [c.78]

Применение топливо-водяныж эмульсий для переработки на технологические и горюч,ие газы  [c.136]

Расположена вне помен.(ения, у наружной технологической установки, содержащей горючие газы или ЛВЖ, надземных и подземных резервуаров с ЛВЖ или горючими газами (газгольдеры), эстакад для слива и налива ЛВЖ и т. п.  [c.417]


Смотреть страницы где упоминается термин Газ технологический горючий : [c.157]    [c.146]    [c.408]    [c.214]    [c.119]    [c.229]    [c.338]    [c.77]    [c.9]    [c.9]    [c.417]   
Теплоэнергетические системы промышленных предприятий Учебное пособие для вузов (1990) -- [ c.149 ]



ПОИСК



Горючий газ



© 2025 Mash-xxl.info Реклама на сайте