Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внешняя и теплота реакции

Связь между теплотой реакции при постоянном объёме и теплотой реакции при постоянном давлении Qp. Если химическая реакция протекает в системе без выполнения работы, отличной от работы против внешнего давления, то величины и Qp существенно отличаются лишь для газовых реакций, протекающих с изменением числа молей  [c.371]

Тепловым эффектом Q реакции называется количество теплоты, которой система обменивается с внешней средой при условии, что температура до и после реакции остается одной и той же. Знаки теплоты, подводимой к системе или отводимой от нее, и теплового эффекта реакции противоположны. Поэтому тепловой эффект экзотермической реакции считается отрицательным, а эндотермической — положительным.  [c.297]


Если система получила теплоту извне, то в ходе реакции, согласно этому принципу теплота должна поглощаться. Если изменение внешних условий связано с увеличением давления (уменьшение об ьема), то в ходе реакции объем системы уменьшается. При наличии внешних воздействий нарушается равенство скоростей прямой и обратной реакций, условия, характеризующего состояние равновесия в системе. Новое состояние равновесия устанавливается в зависимости от развития прямой или обратной реакций.  [c.220]

Тепловой эффект реакции. Химические реакции сопровождаются выделением или поглощением теплоты. В первом случае, т. е. при выделении теплоты, реакции называют экзотермическими, во втором — эндотермическими. Под тепловым эффектом реакции Q понимают количество теплоты, выделяющейся (или поглощающейся) в результате данной реакции, когда реакция протекает при постоянстве двух параметров состояния (Г и Г или Т в р) при условии, что полезная внешняя работа L (в случае постоянных V и Г это будет работа, не связанная с изменением объема) не производится, т. е. и = 0.  [c.487]

Если реакция протекает при неизменном давлении и при этом не выполняется какая-либо работа, отличная от работы против внешнего давления, то теплота реакции при постоянном давлении равна убыли энтальпии системы  [c.371]

Химические реакции сопровождаются обычно выделением или поглощением теплоты, которая называется теплотой реакции. Теплота реакции в зависимости СП особенностей реакций и условий их протекания может быть положительной или отрицательной. В термохимии теплота, выделяющаяся в реакции, считается положительной, а теплота поглощаемая — отрицательной. В химических реакциях, кроме выделения или поглощения тепла, изменяется внутренняя энергия системы и совершается внешняя работа, которая в отдельных случаях может слагаться из работы расширения или сжатия и работ против электрических, магнитных и других сил.  [c.174]

Из этого видно, что внешняя работа невелика и тепловой эффект реакции часто сравнительно мало отличается от теплоты реакции.  [c.175]

Будем считать, что общее количество теплоты с об. которое получает газ, складывается из двух частей внешней теплоты йд (теплоты, подведенной к газу извне или выделившейся в результате реакций горения) и теплоты трения выделившейся внутри газа за счет работы  [c.136]

Так как АН реакции зависит от внешних условий, то и теплоты образования соединений также зависят от этих условий. Поэтому, чтобы  [c.296]


При составлении теплового и влажностного балансов помещения учитывают 1) поступление теплоты от производственного оборудования, электродвигателей, искусственного освещения, отопительных приборов, а также поступление (удаление) теплоты от нагретых (охлажденных) м.атериалов или полуфабрикатов и от химических реакций 2) выделение теплоты и влаги людьми 3) поступление (потери) теплоты через внешние и внутренние ограждения 4) поступление теплоты солнечной радиации через ограждения 5) выделение или поглощение влаги, что во многих случаях сопровождается поглощением или выделением теплоты.  [c.30]

Смещение равновесия химической реакции при изменении температуры происходит тем значительнее, чем больше будет теплота реакции Q. Влияние внешних условий (температуры и давления) на химическое равновесие оценивается принципом смещения равновесия, известным под названием принципа Ле Шателье-Брауна. Этот принцип формулируется так если на систему, находящуюся в равновесии, воздействовать извне, изменяя какое-нибудь из условий, определяющих положение ее равновесия, то последнее смещается, причем в системе начинают протекать процессы, ослабляющие эффект внешнего воздействия.  [c.201]

Это означает, что, когда в системе протекает необратимый процесс, в ней и без внешнего энергообмена как бы действуют внутренние источники теплоты d , которые порождают энтропию. Природа этих источников—химические реакции и фазовые превращения. Пока они идут, происходит изменение параметров состояния. А по мере приближения к состоянию равновесия эти источники иссякают и перестают увеличивать энтропию, которая и этому моменту принимает максимальное значение.  [c.161]

Характерная температура выбиралась исходя из определенного соотношения между скоростями подвода теплоты от внешнего источника и от химической реакции  [c.285]

Большие возможности открываются в связи с освоением термоядерной энергии и созданием принципиально новых установок термоядерных реакторов, обеспечивающих управляемый термоядерный синтез. Остановимся на основах термоядерного синтеза и условиях его осуществления. В химических реакциях, как известно, участвуют только внешние оболочки атомов и молекул, тогда как ядра остаются неизменными. Так, реакция сгорания дейтерия (тяжелый изотоп водорода) в кислороде, сопровождаемая выделением теплоты Q, имеет вид  [c.280]

Уменьшение внутренней энергии 1 — Uj называется тепловым эффектом химической реакции. Тепловой эффект реакции слагается из выделенной при реакции теплоты и внешней работы. При обратимых процессах получается максимальная работа, и реакция сопровождается минимальным выделением тепла  [c.174]

В 5-4, уже обсуждалась одна практическая задача, требовавшая знания теплообмена при отсутствии массопереноса. Это был случай гетерогенной реакции на каталитической поверхности.Кроме очевидной важности такой задачи для химического производства, можно указать также на ее значение, для аэронавтики. К примеру, при входе спутника в атмосферу между ударной волной и носовой частью спутника образуется слой сильно диссоциированного газа, где молекулы кислорода и азота распались на отдельные атомы. Внешняя поверхность спутника может служить катализатором, воздействующим на процесс рекомбинации таких атомов результирующая теплота рекомбинации будет влиять на перенос тепла внутрь охлаждаемой стенки. На стенке сопла ракетного двигателя также возникают каталитические эффекты, которые необходимо учитывать при конструировании охлаждающей системы.  [c.214]

Процесс нагрева металла протекает в две стадии. Первая стадия — предварительный подогрев металла кромки реза до температуры его воспламенения в кислороде неподвижным внешним источнико теплоты (подогревающим пламенем). Вторая стадия — нагрев металла при установившемся процессе в результате совместного действия двух источников (внешнего и внутреннего) теплоты перемещающегося подогревающего пламени и теплоты реакции окисления железа и примесей, содержащихся в металле.  [c.18]


В реальных системах некоторые из параметров (20.11) могут быть неизвестными. Например, при необратимом изобарном горении топлива заданного исходного состава неизвестна температура горения и измерение ее сопряжено со значительнымп экспериментальными трудностями. Однако температуру та,кой смеси веществ можно рассчитать, если известны условия теплообмена системы с окружением. Действительно, в отсутствие теплообмена энтальпия равновесной системы Н Т, Р, п) равна сумме энтальпий исходных веществ (при начальной температуре), так как в адиабатических условиях вся теплота реакции идет на нагревание реагентов, а при наличии теплообмена дефект энтальпии согласно (5.35) равен теплоте Qp, полученной системой от внешней среды. Энтальпия конечного равновесного состояния равняется, следовательно, сумме Ho+Qp  [c.173]

Исследование электрических и магнитных явлений при трении — это один из наиболее достоверных и эффективных путей изучения самой природы трения. Напомним, что именно трение позволило человеку открыть огонь и теплоту, электрон и электричество, создать первые электрические машины, получить один из самых сильных методов ускорения химических реакций и многое другое. Трение обусловлено не только внешним воздействием, но и внутренними силами природы, главным образом электрическими и магнитными си.яами.  [c.394]

Удельный тепловой эффект реакций — примерно 264 ккал кг шихты (КгХгРе-Ь 4Ыа). Теплоты реакции нехвата-ет для самопроизвольного протекания процесса, и поэтому необходим внешний подогрев.  [c.316]

Цепной реакцией называется процесс химического взаимодействия, в котором активная частица (возбужденный атом, молекула с незамкнутыми связями — радикал) может вызвать не одно химическое превращение, а несколько, передавая свою энергию возбуждения вновь образовавшимся частицам. Число превращений, вызванных одной частицей, определяет длину цепи и может исчисляться сотнями и даже тысячами. Механизм цепных реакций очень сложен, так как на развитие цепной реакции ьлияет скорость зарождения активных частиц, скорость развития цепи, скорость обрыва цепей (время жизни активных частиц), а также внешние физические условия — давлёние, температура, скорость отвода теплоты. Математическая теория и физические основы цепных реакций получили свое развитие в трутах  [c.309]

Понятие теплоты, о котором говорится в законе Гесса, требует специальных пояснений, поскольку химические реакции происходят внутри системы, в то время как теплота по определению связана с переносом энергии между системой и внешней средой через граничную поверхность. На рис. 1 приведена схема, поясняющая взаимосвязь между теплотой химической реакции в закрытой системе с постоянным объемом и величиной Qv в (5.32). Кружками обозначены три различных состояния системы в ходе процесса, его направление указано стрелками. Исходное неравновесное состояние химически реагирующих веществ можно характеризовать термодинамически, если считать это состояние равновесным при условии, что вещества изолированы друг от друга или что начало химической реакции необходимо инициировать введением катализатора, локальным нагреванием смеси либо иным способом. Вначале калориметрического опУта одно из этих условий должно обязательно выполняться.  [c.48]

На схеме рис. 1 процесс условно разделен на две стадии. На первой, неравновесной стадии в изолированной системе происходят химические реакции, в результате чего изменяется ее температура, химический состав и другие внутренние свойства, кроме внутренней энергии. Эта стадия — релаксация, химически неравновесного состояния. На схеме показано, что она не сопровождается теплообменом с внешней средой, т. е. теплотой в обычном понимании. Химическая реакция служит здесь внутренней причиной изменения температуры системы. Такой причиной может быть и любой другой нестатический процесс, например выравнивание давлений или концентраций веществ в разных частях системы. Во всех подобных случаях энергетический баланс релаксационного процесса можно выразить с псшощью внутренней теплоты Q. Определим эту величину как количество теплоты, которое потребуется ввести в изолированную систему  [c.49]

Убыль внутренней энергии U — 112 = — можно определить из опыта, когда система переходит из состояния с энергией в состояние с энергией U2 без совершения работы (при постоянных объеме V и других внешних параметрах Д в сложной системе). Она в этом случае равна — Af/=—0 = количеству выделяющейся теплоты или тепловому эффекту перехода (например, тепловому эффекту реакции в калориметрической бомбе Бертло). Таким образом получаем уравнение Гиббса — Гельмгольца для полной работы системы (против всех сил) при любом изотермическом процессе  [c.178]

Проведение реакции в гальваническом элементе. В гальваническом элементе происходит химическая реакция между электролитом и веществом, из которого сделан положительный электрод. В результате этой реакции в замкнутой цепи элемента поддерживается постоянный ток. Если сопротивление внешней цепи настолько велико и, следовательно, сила тока настолько мала, что выделяющейся в цепи джоу-левой теплотой можно пренебречь, то прохождение тока и вызванную им реакцию можно считать обратимым процессом, происходящим в условиях постоянного давления и температуры.  [c.491]

Основными областями технического применения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок, в которых полезная внешняя работа производится за счет выделяющейся при сжигании топлива теплоты анализ циклов ядерных энергетических установок, в которых источником теплоты служит реакция деления расщеп-ляюпгихся элементов анализ принципов и методов прямого получения электрической энергии, в которых стадия превращения внутренней энергии тел или, как говорят еще, химической энергии в теплоту не имеет места, и последняя непосредственно преобразуется в полезную внешнюю работу в форме энергии электрического тока анализ процессов тепловых машин (компрессоров и холодильных машин), в которых за счет затраты работы рабочее тело приводится к более высокому давлению или к более высокой температуре анализ процессов совместного или комбинированного производства работы и получения теплоты (или холода) для технологических или бытовых нужд анализ процессов трансформации теплоты от одной температуры к другой.  [c.513]


Тепловым эффектом химической реакции называют гумму теплоты, поглощенной системой, и всех видов работь над ней, кроме работы внешнего давления, причем вeли ины отнесены к одинаковой температуре начального и конечного состояний системы.  [c.66]

Второй пример состоит в вычислении теплового эффекта реакции в гальваническом элементе. В замкнутой электрической цепи, обладающей настолько большим электрическим сопротивлением, что выделением джоу-левой теплоты можно пренебречь, электрический ток производит полезную внешнюю работу edp (где е — эдс элемента, а dp — количество электричества, протекающего через элемент). В результате произведенной полезной внешней работы энергия гальванического элемента уменьшается последняя запасена в элементе в виде химической (т. е. внутренней) энергии электродов, и ее уменьшение количественно выражается в уменьшении массы исходного вещества электродов н изменении состава электролита.  [c.283]

Основными областями технического приложения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок (в которых полезная внешняя работа производится за счет теплоты, выделяющейся при сжигании топлива) циклов ядерных энергетических установок (где 1 сточннком теплоты служит реакция деления расщепляющихся элементов) принципов и методов прямого получения электрической энергии (в которых стадия превращения внутренней энергии тел — химической энергии в теплоту отсутствует, и последняя преобразуется в полезную внешнюю работу в форме энергии электрического тока) процессов тепловых машин — компрессоров и холодильных машин, где за счет затраты  [c.502]

В печах-теплогенераторах выделеше теплоты происходит в самом нагреваемом материале за счет протекаюпгзх в нем экзотермических химических реакций или за счет подвода к нему электрической энергии. В печах-теплообменниках теплота, выделяющаяся вне материала, передается материалу в рабочем пространстве печи. Внешний теплообмен между материалом и теплоносителем в печах-теплообменниках осуществляется либо излучением (радиационный режим), либо конвекцией (конвективный режим). В топливных печах-тёилообмен-никах химическая энергия топлива (твер-  [c.168]

Во многих теплообменных устройствах современной энергетики и ракетной техники поток теплоты, который должен отводиться от по- верхности нагрева, является фиксированным и часто практически не зависит от температурного режима теплоотдающей поверхности. Так, теплоподвод к внешней поверхности экранных труб, расположенных в топке котельного агрегата, определяется в основном за счет излучения из топочного пространства. Падающий лучистый поток практически не зависит от температуры поверхности труб, пока она существенно ниже температуры раскаленных продуктов сгорания в топке. Аналогичное положение имеет место в каналах ракетных двигателей, внутри тепловыделяющих элементов (твэлов) активной зоны атомного реактора, где происходит непрерывное выделение тепла вследствие ядерной реакции. Поэтому тепловой лоток на поверхнасти твэлов также является заданным. Он является заданным и в случае выделения теплоты при протекании через тело электрического тока.  [c.322]

Выделение теплоты в реакции и совершение внешней суммарной работы ссу-шествляются за счет уменьшения внутренней энергии системы согласно первому закону термодинамики  [c.174]

К химическим ррт-2 такого вида относятся более оригинальные устройства. Это тепловые двигатели, в которых, как обычно, происходит подвод теплоты от какого-либо внешнего источника при высокой температуре (например, путем сжигания топлива). Казалось бы, тут ррт-2 ни при чем и принцип Карно не нарушается. Однако это не так. Изобретатели утверждают, что, используя специальное рабочее тело, в котором протекают химические реакции, можно получить работу большую, чем это позволяет принцип Карно. А это значит, что добавочная работа получается уже вопреки второму закону. Поэтому двигатель подобного вида, хотя внешне был бы вполне респектабельным, представлял бы собой ррга-2, выдавая незаконную дополнительную работу.  [c.209]

Для РУ эволюционных проектов ВВЭР-1000 (В-392) и ВВЭР-640 основное внимание направлено на обеспечение надежного прекращения цепной реакции деления в аварийных ситуациях за счет пассивных средств и внутренне присущих реактору свойств, а также надежного и длительного пассивного охлаждения остановленного реактора, удержание и охлаждение расплава активной зоны. С этой целью осуществляют функциональное и пространственное разделение систем защиты, дублирование и резервирование систем обеспечения безопасности, увеличивают запас воды в корпусе и первом контуре. Используют пассивные устройства и системы безопасности, учитывающие возможность длительного перерыва в энергоснабжении двойную защитную оболочку, рассчитанную на внутреннее давление (стальную) и внешние воздействия (бетонную). ВВЭР-640 имеет пониженную энергонапряженность активной зоны (65,4 кВт/л), увеличенную эффективность механических систем управления и защиты (СУЗ), выгорающие поглотители, организованный вокпуг корпуса бассейн-выгородку с водой для аварийного отвода теплоты, систему аварийного охлаждения активной зоны с увеличенным запасом воды и систему пассивного отвода теплоты с эффективными водо-водяными теплообменниками.  [c.129]

При такой температуре химическая реакция протекает бурно и выделяет со взрывом теплоту в зоне за фронтом волны. Энергия химической реакции идет на поддержание ударной волны, так как ее энергия расходуется на нагрев и сжатие газа. Поэтому стационарная ударная волна не может существовать без внешнего источника энергии. В детонационной волне энергия, вы,деляющаяся при химической реакции, расходуется на поддержание волны и на нагревание продуктов реакции.  [c.127]


Смотреть страницы где упоминается термин Внешняя и теплота реакции : [c.371]    [c.374]    [c.20]    [c.213]    [c.425]    [c.219]    [c.67]    [c.185]    [c.113]    [c.251]    [c.114]    [c.389]    [c.238]    [c.300]   
Термодинамическая теория сродства (1984) -- [ c.28 ]



ПОИСК



Теплота реакции



© 2025 Mash-xxl.info Реклама на сайте