Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пересечение и отражение волн разрежения

Пересечение и отражение волн разрежения  [c.116]

ПЕРЕСЕЧЕНИЕ И ОТРАЖЕНИЕ ВОЛН РАЗРЕЖЕНИЯ  [c.122]

Для второй группы режимов (давление среды выше расчетного) па кромках А и А возникают косые скачки (рис. 6-34,в), пересекающиеся за косым срезом, если угол Р) скачка из точки Ах меньше угла косого среза ф. Точка пересечения скачков В лежит у верхней границы струи. Поток отклоняется от оси струи, проходя несимметричную систему скачков и отраженных волн разрежения, причем поворот потока происходит в противоположном первому случаю направлении. Заметим, что для первой группы режимов (Ра<Р ), поворот струи происходит относительно точки Л, а при Ра>Р (вторая группа режимов) струя поворачивается относительно точки Ль Углы отклонения линий тока, а следовательно, и всей струи меняются вдоль потока, так же как и в первом случае, благодаря влиянию отраженных волн.  [c.380]


Пусть стенка АС канала образована прямой, т. е. направление потока в узком сечении АВ совпадает с его заданным направлением за последней характеристикой СЕ, а вокруг угловой точки В на противоположной стенке происходит расширение Прандтля — Майера (по дуге эпициклоиды В О первого семейства в плоскости годографа). На прямой АС происходит отражение волн разрежения, и заданная скорость газа в точке С(на выходе из решетки) должна определяться в годографе точкой пересечения С прямой А С и эпициклоиды второго семейства, проходящей через ту же точку В. На участке ОЕ граница канала профилируется так, чтобы не происходило вторичного отражения волн разрежения. Для этого за точкой падения каждой волны направление стенки принимается совпадающим с направлением потока за данной волной. В результате стенка на участке ОЕ получается вогнутой. Течение в треугольнике СОЕ содержит непересекающиеся прямолинейные характеристики первого семейства, исходящие из последней характеристики второго семейства ОС. Всему этому треугольнику в плоскости годографа отвечает одна дуга эпициклоиды О С. Такое течение носит название спрямляющего, так как в нем происходит изменение параметров сверхзвукового потока газа до равномерного.  [c.228]

В результате многократных отражений волн в преграде формируется волна разрежения со ступенчатым профилем давления — рис.1.3в. Продолжая анализ далее можно увидеть, что после выхода ударной волны в преграде на ее свободную тыльную поверхность образуется отраженная центрированная волна разрежения. В области взаимодействия встречных волн разрежения в преграде движение среды уже не описывается простой волной и изменение состояния частиц вещества не совпадает ни с одним интегралом Римана. В этом случае значения давления и массовой скорости отыскиваются на пересечении Римановых траекторий изменения состояния вдоль и С -характеристик, проходящих через рассматриваемую точку в данный момент времени. В частности, вдоль хвостовой характеристики отраженной волны разрежения в преграде изменение состояния происходит по траектории с положительным наклоном, проходящей через точку ы = 2ы,, р = 0. Вдоль хвостовой характеристики падающей волны разрежения в преграде изменение состояния происходит по траектории с отрицательным наклоном, проходящей через точку ы = О, р = 0. Из рис. 1.36 видно, что пересечение этих двух фазовых траекторий имеет место в области отрицательных давлений.  [c.20]


На рис. 102, а изображено отражение ударной волны от границы раздела между движущимся и неподвижным газами. Область 5 есть область неподвижного газа, отделенная от движущегося газа тангенциальным разрывом. В обоих граничащих с нею областях I и 4 давление должно быть одинаковым (равным рь) Поскольку же в ударной волне давление возрастает, то ясно, что она должна отразиться от тангенциального разрыва в виде волны разрежения 3, понижающей давление до первоначального значения. В точке пересечения тангенциальный разрыв терпит излом.  [c.582]

При взаимодействии двух ударных волн одного направления в точке пересечения образуются более мощная по сравнению с исходными ударная волна, контактная поверхность и отраженное возмущение, которое может быть волной разрежения или ударной волной в зависимости от интенсивностей взаимодействующих волн. При определенных значениях интенсивности первоначальных волн не существует решения задачи о взаимодействии волн одного направления. Иными словами, принятая схема взаимодействия волн не может адекватно описать картину явления, наблюдаемую в эксперименте.  [c.74]

На диаграмме р, и рис. 11.25 изображен второй случай, когда при отражении возникает волна разрежения. В первом случае прямая р = = Ои Уов проходит выше прямой р = О и/Уол и точка пересечения Ъ лежит выше точки а на ударной адиабате вторичного сжатия вещества А, которая описывается кривой арн )-  [c.567]

Если установить давление за решеткой ниже критического, то поток на выходе станет сверхзвуковым, причем возникнет отклонение потока в косом срезе. Косым срезом называется область, ограниченная треугольниками а а, причем размер соответствует минимальной площади сечения канала между лопатками. При давлении за решеткой ниже критического в точках а возникнут центрированные волны разрежения abd. При пересечении этих волн давление в потоке понижается от (на линии аЬ) до давления за решеткой < р . Эти волны разрежения изобразятся в диаграмме характеристик эпициклоидой 12 (см. рис. 5.31, б), причем при прохождении волн струйки / повернут на угол б, а скорость потока станет равной Струйки II, расположенные по другую сторону кромки, пройдут также отраженную волну разрежения bdef (рис. 5.31, а), которая изображается в диаграмме характеристик эпициклоидой 23 (рис. 5.31, б). После точек а струйки / и И имеют общую границу (отмечены точками на рис. 5.31, а), по обе стороны которой давление должно быть одинаковым, а скорости параллельны. Поэтому образуются косые скачки уплотнений ag. Если, как обычно бывает, угол отклонения невелик, то скачок уплотнений имеет малую интенсивность и может быть заменен элементарной волной сжатия. Эта волна сжатия изображается в диаграмме характеристик эпициклоидой 32. Следовательно, скачки параллельны нормали к этой эпициклоиде.  [c.128]

Практический интерес представляют случаи отражения волн разрежения от стенки и от свободной границы струн. Первый случай показан на рис. 5.9,а. При пересечении первичной волны разрежения AB линии тока, деформируясь, поворачиваются на угол б. Первая характеристика АВ отражается от стенки, причем элемент отраженной волны BD пересекает первичную волну разрежения. Следовательно, вдоль BD давление должно падать, а скорость увеличиваться. К такому же выводу мы приходим, рассматривая поведение линий тока непосредственно у стенки здесь при безотрывном обтекании линии тока параллельны стенке и, следовательно, повернуты на угол 3 к линиям тока, расположенным за характеристикой AD. Такой поворот означает ускорение сверхзвукового потока. Отсюда заключаем, что волна разрежения отражается от плоской стенки в форме волны разреясения, т. е. сохраняет знак воздействия на поток. Легко видеть, что отраженные характеристики составляют с направлением стенки угол, меньший угла соответствующих первичных характеристик, так как скорость за точкой падения увеличивается. С удалением от стенки угол отраженной характеристики уменьшается в связи с тем, что характеристика пересекает область разрежения (на участке BD) и вдоль характеристики скорость  [c.121]


На следующем этапе волна разрежения в ударнике частично переходит в преграду, однако, вследствие несовпадения динамических импедансов ударника и преграды, на поверхности их контакта происходит отражение. Разгрузка преграды происходит по траектории р, и, практически совпадающей с его ударной адиабатой. Из диаграммы видно, что при скорости вещества 2и - Ыд давление в преграде остается достаточно высоким. Отсюда можно сделать интуитивное заключение, что в результате отражения от контактной границы в ударнике образуется волна сжатия, распространяющаяся к его тыльной поверхности. При этом др/ди) < О —вещество ударника вновь тормозится. Состояние р, и на контактной границе после отражения волны разрежения описывается точкой пересечения траекторий изменения состояния преграды (в волне разрежения) и ударника (в переотраженной волне сжатия) —точка 2 на рис.1.36.  [c.20]

Если при заданном значении увеличивать интенсивность падающего на стенку У, с., то можно получить решение, при к-ром реализуется форма отражения, представленная на рис. 4, б (нерегулярное, или махоаское, отражение). В точке разветвления У. с. образуется поверхность тангенциального разрыва ТР, по обеим сторонам к-рой статич, давление и направление скорости одинаковы, а величина скорости, темп-ра, плотность и энтропия различны, При отражении У, с, от свободной поверхности, отделяющей область сверхзвукового течения от неподвижного газа (рис, 4, й), условия на свободной поверхности аналогичны условиям на поверхности тангенциального разрыва (рис, 4, б). Характер же течения в области 2 за падаюпщм У, с, такой же, как и в области 2 при отражении от твёрдой стенки (рис, 4, а), но в области 3 за отражённым от свободной поверхности возмущением давление Pi=P =Piволн разрежения и Хз>Х-2-Более сложным является случай, когда поверхность тангенциального разрыва разделяет два сверхзвуковых потока с разл. скоростями (рис, 4, г). Для обеспечения равенства давлений py=pi поверхность тангенциального разрыва в точке пересечения У, с. может иметь излом, и между  [c.228]

В результате последовательного поворота стенок сопла образуются две распределенные стационарные волны разрежения, при переходе через которые поток расширяется и достигает заданной скорости. Расчетная скорость Я](М ) будет достигнута в пределах зоны пересечения волн разрежения на участке NL. За последней характеристикой LQ, угол наклона которой равен oi,Q = ar sin (l/Mj), поток должен иметь равномерное поле скоростей, в каждой точке которого скорость равна Мь Все линии тока правее LQ должны быть параллельными оси сопла. Отсюда, следует, что каждую звуковую волну, отраженную от противоположной стенки и выходящую за пределы А Е, необходимо погасить соответствующим поворотом стенки на угол, равный углу отклонения потока в такой волне. Начиная от точки А стенку сопла поворачивают так, чтобы падающие на нее волны NS, PF и т. д. не отражались. Таким образом, на первом участке стенки сопла поворачивают в направлении от оси сопла, а на втором участке, где волны, отражаемые от противоположной стенки, гасятся, наклон стенки постепенно уменьшается и в точке Q Q—0. В пределе при уменьшении бо ломаная стенка AAnQ переходит в плавно искривленную стенку.  [c.230]

При пересечении системы волн разрежения и косых скачков отдельные линии тока лшогократно н различно деформируются, причем при еа<е. средний угол выхода потока увеличивается по сравнению с дозвуковым режимом поток отклоняется в косом срезе. С увеличением перепада давлений меняется спектр потока в косом срезе канала и за решеткой, изменяются интенсивность и характер расположения волн разрежения и скачков уплотнения. Увеличиваются протяженность и интенсивность первичной волны разрежения. Углы первичного, отраженного и кромочного скачков уменьшаются, и точка падения косого скачка F на спинку профиля (точка С) смещается по потоку (рис. 11.14,6). В соответствии с этим меняется и характер деформации отдельных линий тока. Однако интенсивность скачков возрастает только до определенного значения числа М , зависяш,его от геометрических параметров решетки.  [c.310]

Важным для понимания структуры течения является то, что в треугольнике СОЕ имеет место течение сжатия. Примем, что в области СОЕ течение плоское. Тогда характеристики АС, СО и граница струи АО являются прямолинейными, и если бы начиная, от точки С контур тела СС был прямолинейным, то в области СОЕ имело бы место поступательное течение с постоянными параметрами. Однако, в силу искривления стенки СЕ, в этой области возникает течение сжатия, аналогичное течению сжатия при обтекании поступательным сверхзвуковым потоком вогнутой стенки. Известно, что такое течение замыкается висячим скачком, начинающимся в точке Ъ пересечения характеристик. На рис. 4.26 пунктиром изображены характеристики условного течения сжатия, которое возникало бы в случае, когда в некоторой области над линией АО, как и между характеристиками АС и СО, имело бы место поступательное течение с р = р . Точка Р, вообще говоря, может находиться как внутри, так и вне струи. Однако проведенные расчеты показывают, что точка Р располагается всегда вне струи. Волны сячатия, возникающие в треугольнике СОЕ, отражаются от границы струи в виде волн разрежения. Волны разренгения, попадая па границу тела, отражаются также волнами разрежения, а от границы струи — в виде волн сжатия и т. д. Дальнейшая структура течения определяется чередующейся системой волн разрежения и сжатия, отражающихся от стенки и границы струи, при этом при отражении от жесткой стенки интенсивность волн сохраняется по величине и знаку, а при отражении от границы струи сохраняется по величине, по меняется по знаку.  [c.179]


В задачах интерференции в зависимости от направлений скачков уплотнения выделяют [23] догоняю1Щ1е (I и 2) и встречные (1 и 5) скачки уплотнения, отраженный разрыв (3) и результирующий скачок (4) (рис. 1.6). Взаимодействие скачка с тангенциальным разрывом называется рефракцией скачка. Особенностью интерференционных УВС является возможность возникновения различного типа исходящих от точки пересечения разрывов. Отраженный разрыв может быть скачком уплотнения, центрированной волной разрежения или слабым разрывом. Тип разрыва и его интенсивность зависят от направлений и интенсив-  [c.21]

Так как отраженные от свободной границы волны пересекаются в пределах второго клина ОВВх, то здесь давление повышается до значения р в сечении ВВ клин разрежения переходит в клин уплотнения. Следовательно, точки б И бь давление в которых меняется от р до ра, также являются источниками волн разрежения и спектр струи повторяется. Нетрудно заметить, что отрезки АА и ВВ равны. При пересечении клина  [c.321]

Если ф<Р1 (рис. 6-34,г), то первый косой скачок лежит в пределах косого среза. В отраженном скачке НВх давление увеличивается до значения, большего, чем Ра. В результате на участке НА и в области ЬАКВх давление повышенное. Из точек А и Вх распространяются волны разрежения АСхОх и ВхВС. В зо.нах 2 устанавливается давление ра. В зоне 4 давление равно рх, а в зоне 5 (за пересечением отраженных волн сжатия) давление вновь повышается. Далее процесс повторяется. Легко заметить, что средний угол отклонения струи в этом случае  [c.380]


Смотреть страницы где упоминается термин Пересечение и отражение волн разрежения : [c.120]    [c.227]    [c.221]   
Смотреть главы в:

Техническая газодинамика Издание 2  -> Пересечение и отражение волн разрежения



ПОИСК



Волна разрежения

Отражение

Отражение волн

Отражение волны разрежения

Пересечение

Пересечение волн

Разрежение

Центрированные волны разрежения. Пересечение и отражение волн разрежения



© 2025 Mash-xxl.info Реклама на сайте