Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон изменения и закон сохранения импульса материальной точки

Закон сохранения импульса материальной точки. Этот закон следует из теоремы об изменении импульса и читается так если равнодействующая сил, приложенных к материальной точке, равна нулю, вектор импульса тела остается величиной постоянной во все время движения, т. е.  [c.111]

Мы пришли к закону сохранения импульса системы импульс замкнутой системы материальных точек есть величина постоянная, или, другими словами, в отсутствие внешних сил сумма импульсов всех точек системы остается постоянной, какие бы изменения внутри системы ни происходили. Это значит, что в процессе взаимодействия частицы системы лишь обмениваются импульсами, оставляя полный импульс системы неизменным.  [c.116]


Методическое замечание к понятию импульса. Закон сохранения импульса изолированной материальной точки и форма основного уравнения динамики (9.1) дают возможность логически просто и последовательно ввести понятие силы и второй закон Ньютона, Если импульс тела изучить до законов Ньютона, то закон инерции можно сформулировать как закон сохранения импульса изолированной материальной точки. Далее следует постулировать сохранение импульса в замкнутой системе материальных точек. Взаимодействие в такой системе будет заключаться в передаче импульса от одних точек к другим, а сила, действующая на материальную точку, будет некоторой функцией положения рассматриваемой точки относительно остальных, определяющей скорость передачи импульса рассматриваемой точки от других точек системы. Уравнение (9.1), т. е. второй закон Ньютона, запишется как следствие закона сохранения импульса системы точек импульс, полученный материальной точкой (в единицу времени), равен импульсу, переданному ей другими точками. Анализ процесса обмена импульсом между двумя точками немедленно приводит к следствию — третьему закону Ньютона. Важно, что трактовка силы н второго закона Ньютона в форме (9.1) без каких-либо изменений применима к действию на материальную точку физического поля. В этой трактовке сила есть скорость передачи импульса точке полем, определяющаяся параметрами поля и положением точки в нем. Это значит, что понятие силы находит обобщение за пределами чисто механической концепции взаимодействия (см. 5). Также объясняется ограниченность применения третьего закона Ньютона при наличии полей обмен импульсами может происходить между телом и полем, между телами через поле, но не непосредственно между двумя телами.  [c.112]

Теорема об изменении импульса системы. Закон сохранения импульса. Теоремы для системы материальных точек удобно получать, обобщая рассмотренные ранее соответствующие теоремы для одной материальной точки. Теорему об изменении импульса материальной точки в форме (9.1) напишем для каждой /-й точки системы, подразделяя силы на внутренние и внешние  [c.135]


Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

Как известно из классической механики, систему из N частиц в случае пренебрежения их пространственной структурой (т. е. когда частицы рассматриваются как материальные точки) можно описать при помощи ЗМ дифференциальных уравнений, которым соответствуют 6Л интегралов движения, т. е. величин, сохраняющихся при изменениях, происходящих в системе. Полное число интегралов движения, естественно, задается тем, что в каждый момент времени система определяется ЗМ координатами и ЗА импульсами частиц (см., например, [1]). Среди 6А интегралов движения ) не все играют одинаковую роль. Чтобы выяснить эту роль, рассмотрим изолированную систему, т. е. систему, которая не подвержена действию внешних сил ). Для такой системы имеется десять интегралов движения, которые соответствуют физическим величинам, всегда сохраняющимся при любом произвольном взаимодействии между частицами системы во время движения. Эти величины, по крайней мере, в принципе можно измерить на опыте в рамках классической механики. 10 интегралов движения можно представить, в соответствии с их физическим смыслом, следующим образом 10 = 4-1-3-2. Цифра 4 соответствует закону сохранения  [c.9]

Закон изменения и закон сохранения импульса материальной точки  [c.110]

Теорема об изменении момента импульса системы. Закон сохранения момента импульса. Теорему об изменении момента импульса для одной материальной точки мы получили в 10 и кратко выразили уравнением (10.4). В правой части уравнения стоит сумма моментов сил, или момент равнодействующей силы, приложенной к материальной точке.  [c.136]

Сформулируйте второй закон Ньютона для системы материальных точек напишите его в виде формулы. Поясните, почему в изменении импульса системы играют роль только внешние силы. Скажется ли на движении центра масс отсутствие в системе внутренних сил Запишите закои сохранения импульса в виде трех скалярных уравнений и сформулируйте следствия из них. Сформулируйте этот закон через ускорение центра масс. Может ли центр масс системы находиться в таком месте, где нет никакой материальной точки Можно ли сумму внешних сил, действующих на систему, называть равнодействующей  [c.121]

В первой главе было показано, что задача о движении одной точки имеет обнхее решение для сравнительно широкого класса сил. Задача о движении двух точек также имеет общее решение в квадратурах при достаточно общих предположениях о силе взаимодействия между точками (см. 3.1). Однако отыскание общего решения задачи трех и более точек при достаточно общих предположениях о силах взаимодействия встречает непреодолимые трудности. В связи с этим общие теоремы, справедливые при любом числе материальных точек, приобретают громадное значение. Такими универсальными теоремами являются законы изменения и сохранения импульса, кинетического момента и энергии. Рассмотрим ЭТ1И законы для механических систем свободных точек (см. с. 26), или, кратко говоря, для свободных систем.  [c.60]



Смотреть страницы где упоминается термин Закон изменения и закон сохранения импульса материальной точки : [c.86]    [c.251]    [c.71]   
Смотреть главы в:

Курс теоретической физики Классическая механика Основы специальной теории относительности Релятивистская механика  -> Закон изменения и закон сохранения импульса материальной точки



ПОИСК



ЗАКОНЫ ИЗМЕНЕНИЯ И СОХРАНЕНИЯ ИМПУЛЬСА КИНЕТИЧЕСКОГО МОМЕНТА И ЭНЕРГИИ Законы изменения и сохранения Импульса и момента импульса материальной точки

Закон изменения

Закон изменения и закон сохранения момента импульса материальной точки ИЗ 10 1 Момент силы Момент импульса

Закон изменения импульса

Закон сохранения

Закон сохранения импульса

Закон сохранения импульса материальной точки

Закон точки

Импульс материальной точки

Материальная

Сохранение

Сохранение импульса

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте