Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функции распределения в многочастичной системе

Описание неравновесной системы с помощью зависящей от времени многочастичной функции распределения является наиболее полным. Уравнение Лиувилля для этой функции в принципе позволяет воспроизвести результаты неравновесной термодинамики и теории, использующей простые вероятностные предположения о случайном поведении системы.  [c.5]

Таким образом, многочастичная физическая система обладает несколькими резко разграниченными временами релаксации ее приближение к равновесию происходит в несколько этапов. При этом в процессе эволюции через относительно большие промежутки времени сокращается число параметров, необходимых для описания состояния системы. На начальной стадии эволюции системы необходимо знать не меньше, чем Л -частичную функцию распределения, а при приближению к конечной, равновесной, стадии достаточно знать лишь локальные термодинамические функции, дающие менее подробное описание системы.  [c.101]


В предыдущей главе неравновесная система рассматривалась на кинетической стадии временной эволюции, когда ее состояние после синхронизации многочастичной функции распределения р(Я1,. ..... Р/ , О определяется одночастичной функцией рас-  [c.135]

Само существование вигнеровских функций является совершенно неожиданной чертой квантовой механики. Из наших предыдущих рассуждений мы знаем, что фазовое пространство q, р) системы не может иметь один и тот же смысл в классической и квантовой механике. В последнем случае невозможно изобразить чистое состояние системы точкой в фазовом пространстве, поскольку, согласно принципу Гейзенберга, q и р ше могут быть измерены одновременно с произвольной точностью. Несмотря на это, возможно статистическое представление многочастичной системы посредством вектора распределения  [c.110]

Хорошо известно, что простейшими моделями в равновесной статистической механики ЯВЛЯЮТСЯ системы с малой плотностью или со слабым взаимодействием, так как изучение каждой из них можно начинать с очень простого нулевого приближения — системы свободных частиц. Аналогичная ситуация имеет место и в теории неравновесных процессов. Как отмечено в разделе 2.1.1, для разреженного газа и для систем со слабым взаимодействием можно ввести кинетическую шкалу времени или, как ее иногда называют, кинетическую стадию эволюции. На этой стадии все многочастичные функции распределения полностью определяются одночастичной функцией распределения. При этом основная задача состоит в том, чтобы получить кинетическое уравнение для одночастичной функции распределения. В настоящей главе мы применим метод неравновесного статистического оператора к выводу кинетических уравнений для классических систем и рассмотрим несколько типичных примеров.  [c.163]

Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]


Для получения такой цепочки уравнений прежде всего проинтегрируем уравнение (47.1) но всем переменным, кроме х , принадлежащим частице сорта а. Тогда, имея в виду исчезновение многочастичной функции распределения при бесконечно больших импульсах и предполагай обращение в пуль на границах системы, получаем  [c.186]

ДЛЯ всевозможных моментов дает аналитическую формулировку проблемы турбулентности. Но эта система уравнений оказывается весьма сложной любая конечная подсистема этой системы уравнений всегда незамкнута, т. е. содержит больше неизвестных, чем имеется уравнений в данной подсистеме (невозможность получить замкнутую систему уравнений для конечного числа моментов является прямым следствием н е л и-ней ности уравнений гидродинамики). Таким образом, при использовании метода Фридмана — Келлера в применении к конечному числу моментов возникает проблема замыкания уравнений для моментов, во многом аналогичная проблеме замыкания цепочки уравнений для многочастичных функций распределения в кинетической теории газов.  [c.18]

В противоположность этому, уравнение (86.12), описывающее эволюцию во времени р2 (и, вообще, уравнения (86.7) при п > 2), уже в нулевом приближении по параметру Гд / содержит потенциал межмолекулярных сил. Он входит в слагаемые и д(й /дvi) оператора Лиувилля 1п, что приводит к быстрым изменениям функций р2, Рг,. .. за время порядка го- Однако на грубой шкале времени, учитывающей только изменения за времена Р>х, эти быстрые изменения функций Рп усредняются, и остается лишь плавная эволюция этих функций. Представляется весьма правдоподобным считать, что медленная эволюция многочастичных функций распределения после первоначального этапа быстрой хаотизации за время г о полностью определяется медленной эволюцией одночастичной функции Р х, /). Действительно, после того как в системе произошло несколько столкновений, поведение молекул унифицируется , становится сходным, и одночастичпая функция дает достаточно полную информацию о системе.  [c.481]

Можно показать, что микроканоническое распределение (12.10) обеспечивает равенство (12.4) среднего по макроканоническому ансамблю (12.2) среднему по времени (12.1) функции координат и импульсов b(q, р) систем, для которых b q, р))< (в соответствии с известным положением термодинамики — см. 2) зависит только от интеграла энергии. Такие системы называются эргоди-ческими. Обоснование (исходя из механики) эргодичности многочастичных систем и возможности замены средних по времени средними по микроканоническому ансамблю носит название эрго-дической проблемы. Эта проблема несмотря на ряд полученных важных результатов еще ждет своего решения.  [c.196]


Смотреть страницы где упоминается термин Функции распределения в многочастичной системе : [c.13]    [c.468]    [c.335]    [c.284]    [c.184]   
Смотреть главы в:

Статистическая механика  -> Функции распределения в многочастичной системе



ПОИСК



Р-распределение из Q-функци

Распределение системы

Система распределенная

Функции системы

Функция распределения



© 2025 Mash-xxl.info Реклама на сайте