Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоские волны в однородных безграничных средах

Плоские волны. Проиллюстрируем применение комплексных амплитуд для описания физических свойств поля на примере простейшего решения уравнений Максвелла — плоской волны в однородной безграничной среде. Поле  [c.17]

Плоские электромагнитные волны существуют в однородных безграничных средах. В случае полей, изменяющихся во времени по гармоническому закону, комплексные амплитуды Е и Н удовлетворяют уравнениям Гельмгольца  [c.46]


Плоские волны в однородных безграничных средах  [c.5]

Таким образом, задача о распространении упругих волн в изотропной среде в безграничном трехмерном пространстве и в случае плоской задачи сводится к интегрированию двух обособленных волновых уравнений. Отсюда видно, что в однородной, изотропной, упругой среде, заполняющей безграничное пространство, любое малое возмущение может быть представлено с помощью наложения волн расширения и волн сдвига. Если среда неоднородна или занимает ограниченную часть пространства, то могут возникать другие типы волн, например волны, распространяющиеся в окрестности границы среды. Такого рода волны будут рассмотрены ниже.  [c.403]

Неоднородные плоские волны не могут существовать в безграничном однородном пространстве, так как тогда звуковое давление растет бесконечно. Однако в ограниченных частях слоистых сред неоднородные плоские волны встречаются довольно часто.  [c.26]

В однородной изотропной бесконечно протяжённой твёрдой среде могут распространяться У. в. только двух типов продольные и сдвиговые. В продольных движение частиц параллельно направлению распространения волны (рис. а), а деформация представляет собой комбинацию всестороннего сжатия (растяжения) и чистого сдвига. В сдвиговых волнах движение частиц перпендикулярно направлению распространения волны (рис. б), а деформация является чистым сдвигом. В безграничной среде распространяются продольные и сдвиговые волны трёх типов плоские  [c.351]

В однородных безграничных средах Н. в. принято наз. однородные плоские волны, распространяющиеся в произвольных направлениях. В изотропных средах волновое число не зависит от направления распространения, а поляризация поперечных волн может быть произвольной (двукратное поляризац. вырождение). В анизотропных и гиротропных средах зависит ох ваправления распространения, а поляризац. вырождение снимается (соответственно различают обыкновенные и необыкновенные Н. в.). На рис. 1 приведены дисперсионные ветви Н. в. в изотропной неизотермич. плазме. Частотные спектры поперечных эл.-магн. и ленгмюровских волн ограничены снизу электронной плазм, частотой сор , спектр ионно-звуковых волн ограничен сверху ионной плазм, частотой сор, значения частот и волновых чисел, ограничивающих дисперсионную ветвь, наз. критическими для данной моды.  [c.361]


В однородных безграничных средах Н. в. принято называть однородные плоские волны, распространяюгциеся в произвольных направлениях. В изотропных средах волн, число к не зависит от направления распространения, а поляризация поперечных волн может быть произвольной. В анизотропных и гиротропных средах к зависит от направления распространения (соответственно различают обыкновенные и необыкновенные Н. в.). На рис. 1 приведены дисперсионные ветви Н. в. в изотропной неизотермич. плазме. Частотные спектры поперечных эл.-магн. и ленгмюровских волн  [c.470]

В однородной изотропной бесконечно протяжённой твёрдой среде могут распространяться У. в. только двух типов — продольные и сдвиговые. В продольных У. в. движение частиц параллельно направлению распространения волны, а деформаций представляет собой комбинацию всестороннего сжатия (растяжения) и чистого сдвига, В сдвиговых eo. iiiax движение частиц перпендикулярно направлению распространения волны, а деформация является чистым сдвигом. В безграничной среде распространяются продольные и сдвиговые волны трёх типов—плоские, сферические и цилиндрические. Их особенность—независимость фазовой и групповой скоростей от амплитуды и геометрии волны. Фазовая скорость продольных волн  [c.233]

Рэлей получил простое решение для рассеямя излучения сферическими частицами, размеры которых малы по сравнению с длиной волны излучения. За этой работой последовала сформулированная Ми [26 более общая теория поглощения и рассеяния излучения малыми однородными частицами, имеющими простую геометрическую форму, такую, как сфера или круговой цилиндр. В теории Ми, основанной на решении уравнений Максвелла, рассматривается идеализированная ситуация, а именно простая сферическая частица из однородного, изотропного материала, помещенная в однородную, изотропную, диэлектрическую, безграничную среду и облучаемая плоскими волнами, распространяющимися в определенном направлении. Диэлектрическая сферическая частица не поглощает излучение, электропроводная сферическая частица частично поглощает, частично рассеивает и частично пропускает падающее излучение. Вывод решения Ми, а также математические и физические аспекты его теории, кроме оригинальной работы, содержатся в книгах [27—  [c.89]

До сих пор мы ограничивались рассмотрением волн в изотропных средах. Многие изверженные породы, а также некоторые карбонаты и песчаники не проявляют явных свойств, характеризующих направленность, и поэтому ведут себя так же, как изотропные твердые тела. Однако для большинства глинистых и некоторых других отложений характерны плоскости кливажа либо ориентация зерен в образцах размером I см . Эти свойства направленности могут проявляться и в мощном слое с большим латеральным протяжением, если предположить, что порода рассматривается как однородная, но анизотропная твердая среда. Было показано, что многие толщи Земли, состоящие из многочисленных тонких осадочных слоев, когда через них распространяются низкочастотные сейсмические волны, ведут себя как однородные, но анизотропные среды [165]. Под влиянием веса вышележащих пород свойства глубоко-залегающих отложений могут обладать симметрией относительно вертикали. Материал с такой осью симметрии был назван поперечно-изотропным [95, 149]. Плоские волны внутр/ такой твердой среды были подробно рассмотрены Рудцким [135], а поверхностные и объемные волны изучались Стоунли [149]. Другие авторы в последнее время занимались проблемами изучения волн от локализованного источника в поперечно-изотропной среде. Эта проблема будет рассмотрена в разделе, посвященном сейсмическим источникам. Ниже изучается свойство плоских волн, распространяющихся в безграничной поперечно-изотропной среде.  [c.46]


Смотреть страницы где упоминается термин Плоские волны в однородных безграничных средах : [c.39]   
Смотреть главы в:

Волны в слоистых средах Изд.2  -> Плоские волны в однородных безграничных средах



ПОИСК



Волна плоская

Волны в безграничной среде

Волны однородные

Однородность среды

Однородность тел

Среда однородная



© 2025 Mash-xxl.info Реклама на сайте