Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инвариантные многообразия и теорема сведения

Следующие полезные сведения дает общая теорема о конечности числа синхронизмов прп наличии диссипации. Численный счет позволяет выявить, как происходит исчезновение синхронизмов и какие синхронизмы остаются. У сохраняющихся синхронизмов неподвижные точки типа центр становятся устойчивыми фокусами, седла сохраняют свой тин, а их инвариантные многообразия могут образовывать сложные гомоклинические структуры.  [c.201]


Инвариантные многообразия и теорема сведения  [c.61]

Теорема сведения Шошитайшвили ([8]). Пусть дифференциальное уравнение с дважды гладкой правой частью имеет особую точку О и линейную часть Ах. Пусть Г, 7 и Г — инвариантные плоскости оператора Л, описанные в п. 4.1. Тогда в окрестности точки О рассматриваемое урав1нение топологически эквивалентно прямому произведению двух уравнений ограничению исходного на центральное многообразие и стандартного седла  [c.63]

Инвариантные многообразия ростков диффеоморфизмов, Для отображений справедливы теорема Адамара—Перрона, теорема о центральном многообразии и принцип сведения Шошитайшвили (см. 4, гл. 3).  [c.106]

Интегральные двумерные тороидальные многообразия естественно возникают при бифуркации периодического движения с переходом через поверхность Как следует из предыдущего параграфа (теорема 5.5), при определенных условиях переход через бифуркационную поверхность сопровождается отделением от периодического движения тороидального двумерного многообразия. Тороидальное двумерное интегральное многообразие на своей поверхности может нести самые разнообразные фазовые портреты, которые могут претерпевать бифуркации, не сопровождающиеся разрушением несущего тора. Помимо этого, возможны бифуркации, при которых тор как гладкая интегральная поверхность исчезает. Пути разрушения тора достаточно многообразны. Среди них особый интерес представляют случаи, когда тор разрушается как целое. Бифуркации тора как целого аналогичны бифуркациям периодического движения типов Л +1, N-1 и Л ф. Однако их исследование по образцу исследования бифуркаций периодических движений наталкивается на новую трудность, поскольку приведение к нормальной форме уравнений в окрестности тора предполагает приводимость линеаризованных уравнении в окрестности тора к лилейным дифференциальным уравнениям с постоянными коэффициентами. Возможен другой подход к рассмотрению бифуркай,ий тора как целого. В основе его лежит сведение задачи о бифуркациях двумерного тора к задаче о бифуркациях инвариантной замкнутой кривой точечного отображения. Для этого разрежем тор секущей поверхностью так, чтобы в сечении получилась замкнутая кривая Г. Фазовые траектории  [c.119]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]



Смотреть страницы где упоминается термин Инвариантные многообразия и теорема сведения : [c.63]   
Смотреть главы в:

Динамические системы-1  -> Инвариантные многообразия и теорема сведения



ПОИСК



Инвариантность

Инвариантный тор

Многообразие

Многообразие инвариантное

Теорема об инвариантном многообразии

Теорема сведения



© 2025 Mash-xxl.info Реклама на сайте