Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и методы испытания пластмасс

СВОЙСТВА И МЕТОДЫ ИСПЫТАНИЯ ПЛАСТМАСС  [c.151]

СВОЙСТВА И МЕТОДЫ ИСПЫТАНИЯ ПОЛИМЕРОВ И ПЛАСТМАСС  [c.234]

При использовании материала справочника следует также учитывать, что основные физико-механические свойства пластмасс определяются на образцах, полученных в различных условиях переработки. Этим объясняется иногда плохая сопоставимость данных о свойствах, взятых из различных источников. Различие в методах изготовления образцов и методах испытания затрудняет сравнение отечественных и зарубежных материалов,  [c.5]


Сравни гельные свойства некоторых групп конструкционных пластмасс представлены в табл. 13-1. Эта таблица преследует лишь цель дать возможность примерного сопоставления свойств различных матерпалов для первоначального пх подбора при конкретных условиях применения. Составлена таблица на основе практического опыта применения и по различным литературным источникам. В табл. 13-2 указаны номера ГОСТ на различные методы испытания пластмасс.  [c.4]

В этой книге имеется огромная библиография (506 литературных названий) по общим вопросам и истории испытаний, по механическим свойствам материалов, по измерениям и измерительной технике, по испытаниям на статическое растяжение и сжатие, сдвиг и изгиб, на твердость, по испытаниям на удар и усталость и, наконец, по неразрушающим методам испытаний и свойствам отдельных классов материалов (металлы, древесина, бетон, кирпич, пластмассы).  [c.316]

Далее приведены в алфавитном порядке критерии оценки свойств полимеров и пластмасс и методы их стандартных испытаний.  [c.233]

Развитие химии и увеличивающийся выпуск полимерных материалов, применяемых в различных отраслях народного хозяйства, обусловливают необходимость разработки и создания средств испытаний. Отставание в выпуске соответствующих машин и приборов для испытаний полимеров может существенно тормозить широкое внедрение этих материалов в промышленность. Отсутствие исчерпывающих характеристик или неправильное определение свойств вызывают неуверенность у конструкторов и инженеров в этих новых перспективных материалах. Это в конечном счете ведет к отказу от применения их в ответственных деталях и узлах конструкций. На всесоюзных конференциях по применению полимеров в машиностроении приводились примеры, когда отсутствие приборов и научно обоснованных методов испытаний приводило к затовариванию прогрессивных видов пластмасс.  [c.3]

Первоочередные потребности в СО органических полупродуктов, кроме необходимых для производства синтетических смол, полимерных материалов и каучуков (о них — см. ниже в этом разделе и в разд. 5.5.4) — для контроля правильности результатов и для градуирования при использовании молекулярного спектрального анализа, хроматографических и других методов, применяемых главным образом, для контроля технологических процессов пиролиза природных газов и нефти, синтеза веществ и контроля качества готовой продукции [113]. Что касается синтетических смол и полимеров, а также испытаний пластмасс, то чрезвычайное разнообразие этих материалов затрудняет перечисление даже основных разновидностей сырья и продуктов, при анализе которых целесообразно применять СО. Более уместна группировка СО по контролируемым показателям с учетом особенностей аналитических методов. Поскольку контролируют не только химический состав указанных веществ, но и их физико-химические свойства, в обзоре рассматриваются и потребности в СО таких свойств.  [c.52]


Старение — совокупность физических и химических процессов, протекающих в полимерном материале, приводящих к изменению его состава и структуры под действием влияющих факторов, к которым относятся эксплуатационные, технологические, конструктивные, а также факторы свойств полимера. Термины и определения приведены в ГОСТ 9.710—84 физико-химические аспекты старения изложены в главе 1. Описанные в разделах 4.3.1 и 4.3.2 методы испытаний по существу относятся также к испытаниям на старение. В данном разделе речь пойдет только об испытаниях пластмасс на старение под воздействием естественных или искусственных климатических факторов, которые осуществляются по ГОСТ 9.708—83 и определяют весьма важное свойство — атмосферостойкость. Форма и размеры образцов при этих испытаниях  [c.131]

Для оценки химической стойкости неметаллических материалов не существует единого ГОСТ как для металлов и общепринятого метода испытаний. В настоящее время химическая стойкость конструкционных материалов (силикатные материалы, конструкционные пластмассы) оценивается по данным изменения веса и некоторых физико-механических свойств. Что же касается резин и лакокрасочных покрытий, то тут отсутствуют общепринятая методика и критерии оценки.  [c.111]

Так как свойства покрытий во многом зависят от толщины, при всех механических испытаниях предусматривается ее определение, для чего применяют разные типы толщиномеров [18]. При оценке механических свойств покрытий могут быть использованы методы и приборы, применяемые при испытании пластмасс и резин и подробно описанные в литературе [19, 20].  [c.81]

Часть испытаний проводят по соответствующим ГОСТ. Для резин —определение набухания в жидкостях (421—59), прочности и относительного удлинения при их воздействии. (424—63), стойкости в агрессивных средах при растяжении (11596—65). Для пластмасс — определение водопоглощения (4650—65), химической стойкости (12020—72) и др. При изучении проницаемости полимерных материалов и защитных свойств покрытий на их основе определяют массу агрессивной жидкости, проникшей в полимер, по привесу в условиях наступившего равновесия йли другим методом защитные свойства определяют также визуально по изменению внешнего вида покрытия. Иногда защитные свойства полимерных покрытий оценивают по коррозии подложки (металла), а чаще всего — электрохимически.  [c.76]

Из имеющихся литературных данных лишь немногие посвящены прямым методам определения прочности пластмасс при повышенных скоростях деформирования. Из сопоставления результатов экспериментального исследования однородных высокополимеров [68, 89—93] следует, что изменение прочности и предельной деформации может иметь сложный характер и зависит от структуры полимера, внешних условий, соотношения времен релаксации, продолжительности испытания и т. д. Проведенное нами исследование свойств полиэфирного связующего ПН- при сжатии, так же как и исследование фенолформальдегидной смолы в работе [67], показало увеличение прочности в 2,1 раза, модуля упругости в 2 раза (с 2,67-10 кгс/смР- до 5,41 10 кгс см ) при изменении скорости деформирования от 10 5 1 сек до 13 1 сек. В то же время предельные деформации при динамическом сжатии составили в среднем 4,6%, что значительно меньше полученных значений при медленных скоростях деформирования.  [c.48]

Методы механических испытаний в большинстве случаев аналогичны применяемым при определении свойств металлов, а в отдельных случаях, отличны от них и должны характеризовать особые свойства пластмасс.  [c.12]

Наиболее распространенным в технике видом испытания на твердость металлов, древесины, пластмасс является метод, заключающийся во вдавливании в образец или деталь, изготовленные из данного материала, другого эталонного тела определенной формы и размеров, изготовленного из более твердого материала. Под твердостью при таком виде испытания понимается свойство материала сопротивляться местной, сосредоточенной в небольшом объеме, пластической деформации у поверхности образца или изделия.  [c.51]


Основным элементом конструирования является расчет на прочность. В настоящее время существует литература по анизотропным и вязкоупругим свойствам стеклопластиков и пластмасс, методам их испытаний и применению в общем машиностроении. С другой стороны, известна литература по классическим курсам теории пластин и оболочек теории упругости, пластичности и ползучести строительной механики и сопротивления материалов. Цель предлагаемой читателю книги состоит в синтезе этих двух сторон задачи для разработки методов расчета на прочность и устойчивость крупногабаритных конструкций нефтеперерабатывающей и химической промышленности из стеклопластиков и пластмасс с учетом специфических свойств материалов и условий их работы. В книге на основе результатов оригинальных исследований, а также передового отечественного и зарубежного опыта показано, какое оборудование  [c.3]

При изучении теплофизических свойств пластмасс хорошо зарекомендовали себя нестационарные методы, к которым относятся методы монотонного нагрева образцов, импульсные методы и др. Принципиально динамические методы позволяют определять теплофизические свойства материалов и при высоких температурах. Однако получаемые характеристики оказываются неоднозначными в силу температурно-временной зависимости теплофизических свойств реагирующих сред при протекании процессов термодеструкции и других физико-химических превращений в связующем стеклопластиков во время нагрева. Это означает, что с изменением режима нагрева образцов происходит изменение исследуемых свойств. Такие характеристики являются эффективными, относящимися к выбранному режиму испытаний. Теплофизические свойства полимеров и композиционных материалов на их основе, определенные при разных скоростях нагрева образцов, могут значительно отличаться друг от друга, так как в зависимости от скорости нагрева меняются химический состав, степень пористости и дефекты структуры материала.  [c.109]

Рассеяние первой группы обусловливается неоднородностью структуры дефектов и внутренних напряжений, возникающих в стекловолокнах при их вытягивании и последующей текстильной переработке, колебаниями химического состава связующего, режимом прессования (отверждения) пластмасс, сложившейся ориентацией наполнителя, степенью полимеризации связующего и распределением этой степени полимеризации в объеме стеклопластиков, наличием различных фаз и включений. Сюда же относится рассеяние за счет метода изготовления и кондиционирования образцов для испытаний. В настоящее время имеется немало работ по исследованию влияния этих факторов на механические свойства конструкционных пластмасс [25].  [c.21]

В зависимости от используемых наполнителей пластмассы подразделяют на композитные и слоистые. Некоторые пластмассы представляют собой чистые смолы и применяются без наполнителей. Композиции из смолы и наполнителей обычно прочнее чистой смолы. Наполнитель влияет на водостойкость, химическую стойкость и диэлектрические свойства, на теплостойкость и твердость пластмассы. Наполнители существенно снижают стоимость пластмасс. Положительные свойства пластмасс малая плотность, удовлетворительная механическая прочность, не уступающая в ряде случаев цветным металлам и сплавам и серому чугуну химическая стойкость, водо-масло- и бензостойкость высокие электроизоляционные свойства фрикционные и антифрикционные шумо- и вибропоглощающие свойства возможность окрашивания в любой цвет малая трудоемкость переработки пластмасс в детали машин. Отдельные виды пластмасс обладают прозрачностью, превышающей прозрачность стекла. Вместе с тем, применение пластмасс ограничивается их отрицательными свойствами. Недостаточная теплостойкость некоторых разновидностей пластмасс вызывает их обугливание и разложение при температуре свыше 300° С. Эксплуатационная температура для изделий из пластмасс обычно не превышает 60° С и реже 120° С. Только пластмассы отдельных видов допускают эксплуатационную температуру 150—260 С и выше. Низкие теплопроводность и твердость, а также ползучесть пластмасс в ряде случаев нежелательны. Свойства и методы испытания пластмасс приведены ниже.  [c.151]

Испытания также показали, что фрикционные свойства наплавленного слоя никаких преимуществ перед металлическим элементом того же состава, но изготовленным литым или горяче-деформированньш способом, не дает. Таким образом, металлизация поверхности трения методом распыления из пистолета сталью с легирующими присадками не дала положительных результатов. Износ металлизационного слоя и износ фрикционной пластмассы был значительно больше, чем при трении по металлическому элементу, изготовленному из той же стали литым способом. Напыление на стальную поверхность чистого вольфрама создало более устойчивое значение коэффициента трения во всех областях исследуемых температур. При высоких температурах значение коэффициента трения оказалось выше, чем при трении по шкиву без напыления вольфрама, но зато износ металлокерамики и напыленного слоя возрос в несколько раз.  [c.576]

Большинство полимеров и пластмасс на их основе, за исключением некоторых реактопластов, способны размягчаться при определенной температуре. При этой температуре материал легко деформируется под нагрузкой. Выше этой температуры жесткие аморфные пластики теряют свои конструкционные свойства. Поэтому методы оценки теплостойкости, в которых определяют верхний температурный предел безопасного нагружения материала, очень важны для испытаний полимерных материалов [4, 5, 7, 19]. Как и следует ожидать, теплостойкость аморфных полимеров и материалов на их основе непосредственно связана с температурой стеклования Т . Теплостойкость высококристаллических полимеров обычно значительно выше Т . Наполнители также часто повышают теплостойкость аморфных полимеров значительно выше их Тс.  [c.23]


Перечисленные выше методы испытаний позволяют толы о качественно, а не количественно, оценить химическую стойкость полимерных материалов и, особенно, защитных покрытий. Единых установленных стандартами критериев оценки химической стойкости для всех полимерных материалов и покрытий на их основе нет. Для пластмасс можно пользоваться трехбалльными шкалами оценок, учитывающими раздельно изменение массы (объема) и механических свойств полимерных материалов (в процентах) под воздействием среды (ГОСТ 12020—72).  [c.77]

Стандарт устанавливает общие требования к выбору пластмасс для деталей машин, приборов и других технических изделий, поставляемых в макроклимати-ческие районы с тропическим климатом по ГОСТ 15151—69, и методы их испытаний по следующим показателям трибо-стойкости коэффициенту сохранения свойств (k), определяемому по изменению показателей физико-механических свойств и внешнего вида  [c.630]

При определении прочностных и деформативных характеристик эти методы связаны с разрушением образца или конструкции. Однако имеется ряд методов, которые позволяют оценить физйко-механические свойства материалов в изделиях, не доводя их до разрушения. К ним можно отнести склерометрические методы, основанные на определении диаметра или глубины отпечатка, или величины отскока индентора при его воздействии на исследуемый материал. В настояшее время эти методы получили наибольшее распространение при испытании строительных материалов и конструкций, особенно бетонных и железобетонных [140]. Значительный интерес при исследовании свойств пластмасс представляет метод микротвердости, который получил развитие при металлографических исследованиях. Применение этого метода связано с определением глубины и размеров микроотпечатков индентора в виде алмазной пирамиды. При этом измерение микротвердости производится при приложении весьма малых нагрузок, что делает этот метод также удобным при испытании пластмасс.  [c.67]

К этим методам относятся испытание прочности сцепления при срезе, растяжении, сжатии и изгибе (для пластмасс), контроль толщины и твердости нанесенного слоя проверка сплошности и плотности покрытия, испытания на износ, коррозионную стойкость, жаростойкость, гермостойкость и другие свойства в зависимости от специальных требований, предъявляемых к покрытиям.  [c.228]

В настоящее время накоплен большой опыт по испытанию композиционных материалов. Созданы различные разрушающие [78] и неразрушающие 46] методы определения механических свойств. При корректной постановке эксперимента и иравилышм выборе геометрических размеров образцов разрушающие м неразрушающие методы позволяют получать весьма близкие ио значениям механические характеристики на некоторых тниах анизотропных материалов 46]. Необоснованный выбор схемы нагружения и параметров образца может привести к несопоставимым значениям характеристик, полученных на одних и тех же материалах одними и темн же разрушающими методами 112, 26, 84, 93]. Это объясняется прежде всего тем, что не все разрушающие методы достаточно изучены . многие методы разработаны для изучения свойств изотропных материалов, позже перенесены на исследования пластмасс, а затем распространены на композиционные материалы. Естественно, они не учитывают особенностей структуры и свойств композиционных материалов, что приводит к результатам, которые невозможно повторить, а часто соио-ставнть даже при таких видах нагружения, как испытание на растяжение, сжатие п изгиб. Испытание на сдвиг композиционных материалов изучено мало [78, 119].  [c.26]

Ввиду того, что не во всех фирменных проспектах указываются все свойства данной пластмассы, таблицы составлены так, чтобы читатель мог по аналогии оценить и то интересующее его свойство, которое в отношении данной пластмассы не указано. Свойства пластмасс измерялись различными методами, так что приводимые данные не всегда являются сравнимыми (особенно данные о водо-поглощении). В отношении ударной вязкости образца — бруска с надрезом данные в таблице приведены на основе испытаний по Изоду (по нормам ASTM стандарта, принятого в США), с пересчетом на кГсм см . Под термином теплостойкость понимается температура геометрической теплостойкости, а не максимальная температура, при которой можно использовать данную пластмассу. Нужно подчеркнуть, что все показатели механических свойств кратковременные и что в большинстве случаев их нельзя использовать в качестве исходных данных для конструктивных расчетов. Эти данные приведены прежде всего для того, чтобы читатель мог сравнить материал и оценить его эксплуатационные качества. Электрические параметры пластмасс, приводимые в таблицах, являются только приближенными и служат исключительно для первоначальной ориентации. Электрическое поведение пластмасс является такой же сложной проблемой как и механическое.  [c.284]

Для того чтобы лучше использовать такие положительные свойства прессованной древесины, как свойство самосмазывания, упругость, химическая стойкость, вибростойкость, и реализовать высокую производительность изготовления деталей нз полимеров, Б. И. Купчиновым разработана технология изготовления древесно-пластмассовых подшипников скольжения. Она состоит в том, что древесина в виде брусков облицовывается термопластичной пластмассой методом литья под давлением. У таких изделий самосмазывающиеся материалы на основе древесины образуют поверхность трения, а литьевой материал — корпус. Стендовые испытания таких наборных подшипников р = 25 кгс/см , V = 0,3 м/с) по сравнению со втулочными, пропитанными маслом МС-20, показали в режиме самосмазки при температуре до 160 °С работоспособность в 1,5—2 раза более высокую. Изготовление наружной опоры поверхности подшипника в виде отдельных сегментов с радиусом кривизны меньшим, чем ради с прессового отверстия, позволяет резко увеличить демпфирующие свойства подшипника и компенсировать изменение в полимере при нагреве.  [c.180]


Смотреть страницы где упоминается термин Свойства и методы испытания пластмасс : [c.2]    [c.160]    [c.43]    [c.85]    [c.130]   
Смотреть главы в:

Машиностроительные материалы Краткий справочник Изд.2  -> Свойства и методы испытания пластмасс


Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.151 ]



ПОИСК



Метод испытаний

Пластмассы Свойства

Пластмассы методы испытаний



© 2025 Mash-xxl.info Реклама на сайте