Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластическая деформация и ползучесть от термических напряжений

Термические напряжения могут вызвать пластическую деформацию и ползучесть, обычно отличающиеся от таких же процессов при действии механических напряжений более быстрым затуханием ввиду значительной релаксации термических напряжений.  [c.211]

В деталях котлов и трубопроводов при резком наборе или сбросе нагрузки, а также при аварийных остановках могут возникать напряжения, превышающие предел текучести. Повторное многократное приложение таких напряжений приведет к разрушению от малоцикловой усталости. Для этих напряжений обычно свойствен случайный характер изменения во времени при асимметричном цикле. В процессе изменения температурных напряжений возникает упругая деформация, упруго-пластическая статическая или упруго-пластическая деформация по механизму ползучести. Усталость в упругой области — малоцикловая усталость. Усталость в упруго-пластической области — малоцикловая усталость. При упруго-пластической деформации по механизму ползучести накладываются два процесса усталость и ползучесть. Величина термических напряжений и вызываемая ими деформация зависят от степени стеснения деформации. При свободном расширении равномерно нагреваемого стержня степень стеснения деформации отсутствует температурные напряжения равны нулю.  [c.49]


Характер повреждений от термических напряжений только частично похож на характер повреждений от механической малоцикловой усталости. Одно из отличий состоит в том, что при термической усталости возникает местная аккумуляция пластических деформаций в жестко защемленных системах (локализация удлинения). Существенным различием является также и то, что под влиянием температурных колебаний структура материала, особенно для алюминиевых сплавов дисперсионного твердения, может изменяться. Имеется различие и в интенсивности механической и термической усталости, так как в последнем случае, спустя некоторое время, могут появиться процессы ползучести.  [c.407]

Поверхностные слои инструментов горячей деформации в каждом цикле нагрев — охлаждение изменяют свой объем. При нагреве поверхностные слои должны были бы расшириться, но более холодные внутренние слои препятствуют этому, вследствие чего вначале внешние слои упруго сжимаются (рис. 30). Если температурный градиент от поверхности внутрь детали достаточно велик, то при данном коэффициенте теплового расширения напряжение сжатия при доминирующей температуре достигнет действительного предела текучести (предела ползучести) и в поверхностном слое произойдет пластическая деформация (сжатие). При быстром охлаждении этот же слой должен был бы постепенно сжиматься, но из-за предшествовавшей пластической деформации и из-за сопротивления теперь уже более нагревшихся внутренних слоев протекание этого процесса затруднено или он вообще не происходит и, таким образом, поверхностный слой сначала упруго, а затем пластично растягивается. При восстановлении первоначальной температуры размер поверхностного слоя совпадает с его первоначальным размером, но в нем остается растягивающее напряжение, величина которого соответствует пределу текучести стали. Поэтому в новом цикле нагрев — охлаждение возникает дополнительная остаточная деформация (см. рис. 30). Если можно было бы повышение температуры поверхности ограничить так, что возникла только упругая деформация, то диаграмма напряжение—деформация стала бы обратимой и термическая усталость не наступила.  [c.47]

В процессе ползучести напряжение зависит от упрочнения, возникающего в результате пластической деформации, и от термического разупрочнения, связанного с релаксацией напряжений а = а(е,(). При установившейся ползучести, когда влияние обоих механизмов взаимно уравновешивается,  [c.154]


Однако осуществить эти условия не всегда возможно, и часто в конструкциях не удается полностью устранить ползучесть, а только замедляют ее. Поскольку скорость ползучести зависит от состава и строения металла, стремятся уменьшить ее соответствующим легированием или термической обработкой. При этом уменьшается скорость процессов разупрочнения при заданных температурах, что достигается тогда, когда возрастают атомные связи в металле уменьшается величина пластической деформации, вызванной данным напряжением, т. е. повышается прочность сплава при данной температуре.  [c.455]

При напряжениях, меньших протекает процесс обратимой ползучести (последействия), идущий с весьма малой деформацией и обычно не учитываемый. При температурах меньших 0,5 Т,гл, но напряжениях выше а р, устанавливается низкотемпературная ползучесть, имеющая неустановившийся характер. Так как зависимость деформации от времени для этого вида ползучести выражается логарифмической функцией, то она называется логарифмической ползучестью. Ее скорости малы, а механизм связан с флуктуациями термических напряжений до уровня, способного вызвать дополнительную пластическую деформацию с течением времени. Поскольку с возрастанием деформации флуктуации напряжений приводят к дополнительному упрочнению материала, с ростом деформации ее дальнейшее протекание все более затухает и скорость ползучести снижается. Исключением из этого общего случая является, например, замедленное разрушение закаленной стали, при которой в результате значительной неупорядоченности границ зерен и насыщенности их вакансиями и в условиях низкотемпературной ползучести возможно образование межзеренных трещин [87]. При напряжениях, близких к пределу прочности, можно вызвать разрушение образцов технического железа даже при отрицательной температуре (—60 С). В этом случае можно полагать, что процесс логарифмической ползучести при таких высоких напряжениях приводит к образованию шейки в образце, что и вызывает разрушение в отличие от затухания процесса деформирования при умеренном уровне напряжений.  [c.18]

Для хорошо отожженных кристаллов чистых металлов (без примесей) Тт Примеси создают около дислокаций облака (см. 2.5), которые являются одной из причин увеличения т . В этом случае движение дислокации возможно и при < т < когда приложенное внешнее напряжение еще не может вырвать ее из облака примесей и перемещение происходит вместе с облаком благодаря диффузии образующих его атомов примесей. В отличие от мгновенной пластической деформации, соответствующей движению свободной дислокации, такое перемещение приводит к деформации ползучести и ускоряется с повышением температуры, увеличивающей скорость диффузии. Повышение температуры Т вызывает также уменьшение концентрации атомов примесей в каждом облаке и более равномерное распределение их по объему кристалла, что уменьшает значение Тт. Однако при резком повышении температуры такое перераспределение атомов примесей не успевает произойти и изменение Тт запаздывает во времени по сравнению с изменением Т. Это явление характерно для некоторых алюминиевых сплавов, которые проходят термическую обработку старением.  [c.92]

В гл. 1 излагаются необходимые сведения о механических испытаниях. Физическими носителями высокотемпературной пластической деформации являются дефекты решетки вакансии, дислокации, границы зерен кристаллов. Они вводятся в гл. 2. Гл. 3 посвящена общему рассмотрению зависимости скорости установившейся ползучести от температуры и приложенного напряжения. Приводятся и необходимые термодинамические соотношения. В гл. 4 описаны модели ползучести, контролируемой возвратом и термически активированным скольжением. Действие гидростатического давления, в особенности на вещество Земли — минералы и горные породы, — рассмотрено в гл. 5.  [c.9]

Другие барьеры в виде полей напряжений, которые не могут быть преодолены действием термических флуктуаций, возникают при определенных условиях от винтовых дислокаций. Если винтовые дислокации содержат достаточное количество порогов, они перемещаются медленно и вызывают обратные напряжения, действующие на близлежащие винтовые дислокации. Дислокационные сплетения (клубки дислокаций), несомненно, являются источниками взаимодействия полей напряжений. Возврат части пластической деформации при снятии напряжения в условиях высокотемпературной ползучести свидетельствует о наличии таких обратных напряжений.  [c.273]


В отличие от явлений, в результате которых термическая усталость приводит к разрушению, термическим скачком называют явление, вызывающее деформацию при этом деформация, обусловленная циклическим изменением термических напряжений, накапливается в одном направлений. Обычно, если действуют только термические напряжения и неупругая деформация многократно изменяется циклически, то однонаправленные напряжения растяжения или сжатия релаксируются и становятся знакопеременными. Деформация также становится знакопеременной, термический скачок не возникает. Если помимо термических действуют и другие напряжения, то эти напряжения играют роль средних напряжений деформации. Отличие of скачка пластической деформации в материалах при комнатной температуре, когда не происходит ползучести, заключается в накоплении неупругой деформации, зависящей от времени (ползучести), помимо пластической деформации, не зависящей от времени. Следовательно, рассматриваемое явление зависит от числа циклов наг )ужения и 6т времени.  [c.16]

Термической называют усталость, возникающую вследствие циклического изменения термических напряжений при изменении температуры. Из-за стеснения теплового расширения или теплового сжатия при термической усталости возникает упругая деформация, упруго-пластическая деформация или упруго-пластическая ползучесть. В соответствии с этими видами деформации можно выделить усталость в упругой области (многоцикловую усталость), в упруго-пластической области (малоцикловую усталость) или в области упруго-пластической ползучести (наложение ползучести и усталости). Даже при одинаковой термической деформации, обусловленной одним и тем же градиентом температуры, но при различной степени стеснения деформации (коэффициенте стеснения), различаются и величина механической деформации (упругой, пластической или ползучестй) и величина термических напряжений. Кроме того, если изменяется температурный цикл, то различаются как доля упруго-пластической деформации (не зависящей от времени), так и доля деформации ползучести (зависящей от времени) на один цикл изменения температуры.  [c.245]

При пониженных температурах появляется деформация двой-никования и может происходить фрагментация зерен. Если размер фрагментов в процессе термоциклирования изменяется незначительно, то их разориентировка увеличивается и образуются большеугловые границы, т. е. в старом зерне образуются новые. Этот процесс носит деформационный характер и связан с перераспределением дислокаций. Механическая усталость при больших амплитудах напряжений (малоцикловая усталость) также характеризуется фрагментизацией зерен. Таким образом, механизм пластической деформации при термической усталости в зависимости от свойств материала, максимальной температуры цикла, температурного интервала и других факторов имеет в той или иной мере сходство с аналогичными механизмами при явлениях ползучести и усталости.  [c.103]

Чередование нестационарных режимов работы со стационарными делает все более сложными и напряженными условия работы дисков турбомашин [22, 23, 44]. Мощные тепловые потоки в авиадвигателе вызывают в турбинных дисках высокие температуры (до 700° С) при значительных радиальных перепадах (до 300°С). Это определяет большие термические напряжения циклического характера [43, 70]. На стационарных режимах температуры и нагрузки сохраняются постоянными, но достаточно высокими, что приводит к ползучести и релаксации напряжений во время эксплуатации. Таким образом, в материале турбинного диска при многократном повторении нестационарного режима возникают циклически изменяющиеся пластические деформации, а их накопление от цикла к циклу в ряде случаев является причиной разрушения дисков [22, 43], особенно если пластичность материала снижается с увеличением выработки ресурса и пребывания материала в условиях высоких температур [10, 100]. В этом отношении характерны результаты теоретического и экспериментального исследования термопрочно- сти дисков турбомашин [43], приведенные на рис. 1.7.  [c.15]

Сплавы из смеси двух металлов приобретают максимальную прочность при некоторой определенной дозировке двух компонентов, причем прочность сплава может оказаться более высокой, чем прочность каждого из компонентов в отдельности. Оптимальную прочность можно иногда получить путем добавки к чистому металлическому элементу очень малого количества другого металла. Так, например, введение примерно 100 г серебра к 1 т свободной от примеси кислорода меди повышает сопротивление ползучести меди прп температурах от 120 до 150° С (т. е. понижает до минимальной величины малую скорость, с которой медь непрерывно деформируется под постоянным напряжением и при указанных температурах). Оптимальная прочность и наибольшая твердость в сплавах достигаются путем соответствующей термообработки, с последующим охлаждением, которое производится с требуемой скоростью, включая и очень высокую скорость (закалка). Термической обработкой достигаются еще и две другие важные цели 1) отжиг для снятия напряжений (обычно при умеренно высоких температурах) и 2) рекристаллизация в сочетании с предварительным наклепом. Благодаря отжигу снимаются нежелательные и вредные системы начальных или остаточных напряжений (здегь мы имеем применение процесса релаксации, о котором упоминалось в гл. I, на стр. 12), обусловленные различными технологическими процессами при изготовлении и механической обработке металлических изделий. Остаточные напряжения вызываются термическими напряжениями при неравномерном нагреве или охлаждении (в отлитых или сваренных изделиях), неравномерными пластическими деформациями (в полученных посредством прокатки полосах, листах и т. п.) пли теми и другими вместе. Наконец, остаточные напряжения могут возникнуть и при механической обработке (вызывающей пластические деформации в поверхностном слое, в результате давления режущего инструмента).  [c.61]


При тфмической обработке сварных деталей ползучесть металла возникает как в процессе нагрева, так и в процессе вьщержки причем пластические деформации развиваются не только в зоне сварных соединений, которая подвержена образованию трещин термической обработки (ТТО), но и в соседних участках. Вследствие этого диссипация упругой энергии идет боле интенсивно и возможность образования трещин уменьшается. В опытах [25] получено, что релаксация напряжений от одинакового начального уровня происходит несколько быстрее в металле, прошедшем термический пдкл сварки, по сравнению с металлом того же химического состава, но в состоянии отжига.  [c.448]


Смотреть страницы где упоминается термин Пластическая деформация и ползучесть от термических напряжений : [c.266]    [c.346]   
Смотреть главы в:

Механические свойства металлов Издание 3  -> Пластическая деформация и ползучесть от термических напряжений



ПОИСК



597 — Деформации и напряжения

Деформация пластическая

Деформация ползучести

Напряжение термическое

Напряжения при пластической деформации

Пластическая деформаци

Пластические напряжения

Ползучесть пластическая



© 2025 Mash-xxl.info Реклама на сайте