Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам Области применения

Применение чугуна с шаровидным графитом как износостойкого материала. Расширению областей применения чугуна с шаровидным графитом как износостойкого материала способствует то обстоятельство, что, применяя соответствующую термическую обработку, можно получить наиболее приемлемую структуру чугуна, хорошо работающего на износ. Износостойкость чугуна с шаровидным графитом, кроме того, может быть повышена за счет его легирования такими элементами, как вольфрам, молибден, медь, титан, марганец, никель и др.  [c.168]


Области применения. До 1939 г. различные сплавы кобальт - хром — вольфрам находили применение главным образом для изготовления режущих инструментов, твердых сплавов и коррозионностойких отливок. Путем  [c.306]

Главная область применения вольфрама — производство сталей (около 85%). Он входит в состав жаропрочных сверхтвердых сталей (инструментальные, быстрорежущие) и сплавов (победит, стеллит и др.). Чистый вольфрам используется в электротехнике (нити ламп накаливания) и радиоэлектронике (катоды и аноды электронных приборов), для спиральных нагревателей в электрических печах, электродов, различных деталей для высоковакуумных и рентгеновских приборов, при атомно-водородной сварке.  [c.201]

Области применения. В светотехнике вольфрам и вольфрам, легированный 5 % рения, используется для спиралей и других типов ламп накаливания.  [c.585]

Порошковые шприц-пистолеты. Применяются только для напыления очень тугоплавких Металлов или таких, которые нельзя изготовить в виде проволоки (твердые металлы, вольфрам, сталь У2А и др.). Другая область применения пистолетов этого рода — распыление неметаллов, в частности пластмасс или керамических материалов, например А Оз [42].  [c.636]

Комплексные силицидные покрытия для вольфрама и его сплавов пока находятся в стадии лабораторных разработок и не имеют суш,ественных преимуществ перед чистыми силицидными покрытиями [10, 11, 72, 260]. Поскольку основные области применения вольфрама связаны с температурами 1900° С и выше, требования к защитным покрытиям для него более жестки, чем для менее тугоплавких металлов. Покрытия на основе силицидов малоэффективны при температуре 1700° С и выше, т. е. именно в той температурной области, для которой вольфрам и сплавы на его основе представляют наибольший интерес. В табл. 85 приведены результаты циклических испытаний на описание различных типов комплексных покрытий.  [c.328]

Основная область применения молибдена — металлургия. Молибденовые стали характеризуются повышенной прочностью, сопротивляемостью износу и ударным нагрузкам. Особенно высока жаропрочность молибденовых сталей, причем при равных присадках она значительно больше, чем у вольфрамовых. В быстрорежущих сталях молибден может заменять вольфрам. Стали, легированные молибденом, применяются для изготовления брони и оружия — это броневые, орудийные и ружейные стали. Молибден широко также используется в конструкционных сталях, которым он сообщает высокие прочностные и технологические свойства. В сочетании с никелем, кобальтом и хромом молибден входит в состав кислотоупорных и жаростойких сталей.  [c.109]


Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности. В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности. Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель. Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]

Несмотря на то, что объем производства порошковых сплавов невелик и составляет всего 0,1% от обш,его объема производства металлов, они имеют очень большое значение в народном хозяйстве и область их применения чрезвычайно широка. При этом изготовление многих сплавов практически возможно только из порошка, например, изготовление твердых металлокерамических сплавов, керметов, сплавов из тугоплавких металлов — вольфрам, молибден, тантал, ниобий — или композиций этих металлов с легкоплавкими металлами, или из металлов с неметаллическими материалами. Многие детали из порошковых сплавов отличаются лучшими качествами и дешевле, чем из обычных металлов.  [c.477]

Металлические связи, появляющиеся между ближайшими соседями вдоль направлений (111) вследствие перекрывания (е5)-орбиталей и концентрации d-электронов между ядрами, упрочняют и стабилизируют ОЦК структуру от металлов группы скандия (III гр.) и титана (IV гр.) к металлам VI группы (хром, молибден, вольфрам). Близость электронного строения, определяющая идентичность ОЦК структур, способствуют образованию широких или непрерывных областей ОЦК твердых растворов между тугоплавкими металлами IV—VI групп и создают широкие возможности твердорастворного упрочнения путем взаимного легирования этих металлов. Наряду с повышением высокотемпературной прочности такое легирование в ряде случаев позволяет значительно повысить жаростойкость при газовой коррозии в агрессивных средах. Введение в тугоплавкие ОЦК металлы до 25—30% рения, а также рутения или осмия, которые вследствие неполной ионизации имеют плотную гексагональную структуру, но при растворении в ОЦК металлах передают в коллективизированное состояние все валентные электроны, приводит к сильному повышению пластичности ванадия,, хрома, молибдена и вольфрама ( рениевый эффект ). Такое повышение пластичности хрупких металлов интересно с точки зрения теории легирования и нашло определенное практическое применение  [c.39]

Высокая чистота потребовалась в последнее время не только для металлов. Для применения в области высоких температур широко используют в настоящее время силициды, карбиды, бориды таких металлов, как тантал, вольфрам, ниобий и др. Так, в литературе указывается, что для изготовления различного рода изделий, например подшипников, работающих при высоких температурах, для производства режущего инструмента и деталей, работающих на износ, применяют борид титана высокой чистоты.  [c.526]

Сведения о применении вакуумных микровесов для изучения процессов в чистом фторе или его соединениях в литературе отсутствуют. Объясняется это, по-видимому, тем, что к общим трудностям использования такого чувствительного вакуумного прибора, как микровесы, добавляются еще трудности, связанные с коррозионной агрессивностью фтора и его соединений, которая сильно ограничивает возможности выбора материалов для изготовления микровесов. В частности, невозможно применение таких классических по своим упругим свойствам материалов, как кварц и вольфрам, являющихся основными для изготовления практически всех известных в настоящее время моделей вакуумных микровесов. Поэтому всякие новые данные в этой области представляют большой интерес.  [c.152]

Этот метод заслуживает дальнейшего углубленного исследования с целью выяснения областей наиболее рационального его применения. При этом целесообразно проведение экспериментов над парами металлов, которые не представляется возможным или затруднительно соединить обычными методами. К числу таких пар следует отнести пары углеродистая сталь + алюминий, нержавеющая сталь + алюминий, сталь + серебро, сталь + титан, сталь + молибден, сталь + вольфрам, сталь + тантал, сталь хастеллой и другие.  [c.203]


Легированная сталь, В рассмотрение входят следующие присадочные металлы марганец, никель, хром, вольфрам, молибден, ванадий и кобальт. Из них марганец и никель оказывают действие на увеличение области — гамма (аустенит). Применение конструкционная сталь. Хром, вольфрам, молибден и ванадий должны быть отмечены как возбудители образования карбида. Применение инструментальная сталь.  [c.1032]

В энергетических ядерных реакторах. Широкий температурный интервал существования жидкой фазы металлического галлия, низкое давление его паров и малое сечение захвата нейтронов являются ценными свойствами для его применения в качестве теплоносителя. Препятствием к применению галлия в этой области служит его активное взаимодействие при рабочих температурах с большинством конструкционных материалов. Наиболее стойки против действия галлия ниобий (до 400°С), тантал (до 450° С) и вольфрам (до 800°С). Эвтектический сплав Ga — Zn — Sn оказывает меньшее коррозионное действие на металлы, чем чистый галлий.  [c.413]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Стеллиты. В 1899 г. Хейнс разработал сплав кобальта с хромом, обладавший стойкостью к действию паров химических веществ и бапьшой твердостью вплоть до красного каления. Сплав не поддавался обработке на хо лоду, но его можно было ковать при ярко-красном калении. В 1908 г. Хейнс разработал сплав для изготовления режущих инструментов с кромкой, как у отпущенной стали. Путем введения добавок вольфрама, молибдена и углерода к сплаву на основе кобальта и хрома была превзойдена в этом отношении быстрорежущая сталь. Блаюдаря этому сплавы кобальт — хром вольфрам получили собственную область применения и были названы стеллитами (латин. si Ua — звезда).  [c.306]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°. Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория. Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела. Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом. В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]

Контакты, применяемые в различных искровых приборах, контакторах и тому подобных изделиях, изготовляются из порошков, состояпдих из металлов, обладающих высокой электропроводностью (медь, серебро), и металлов, обладающих высокой прочностью (вольфрам), или же из смеси таких металлов с некоторым небольшим количеством графита. Для контактов такого рода характерным является сочетание высокой электропроводности с хорошей коррозийной устойчивостью и механической прочностью. Химический состав, свойства и область применения контактов приведены в табл. 120.  [c.214]

Рений может найти применение в самых различных областях, однако из-за высокой стоимости и редкости в настоящее время этот металл не применяется в широком промышленном масштабе. По-вндимому, наиболее перспективно применение рения в электронике и в области измерения высоких температур (рений-вольфрамовые термопары, работающие при температурах выше 2000"). Другие возможные примеры применения реиия, основанные на его высокой температуре плавления, приведены в патенте фирмы Меллори энд компани [94]. Описан сплав, содержащий вольфрам, молибден и рений, из которого изготовляются электрические контакты. Сплавы платины и рения или платины и рения вместе с железом, родием и иридием, применяемые для термопар, описаны в английских патентах [16, 17]. Аналогичные сплавы описаны Гёдеке [31].  [c.632]


Материалы кернов. В качестве материалов для изготовления кернов получили применение различные сорта никеля, молибден, тантал и вольфрам, отвечающие в той или иной мере совокупности требований, предъявляемых к металлической части оксидных катодов. Основными из этих требований являются высокая температура плавления и малая скорость иапарения, химическая устойчивость к покрытию и газам, выделяющимся при откачке и работе приборов, механическая прочность и формоустойчивость в области высоких температур, хорошая обезгаживаемость и положительное влияние ка эмиссионные свойства катода.  [c.235]

В последнее время все большее применение получает более чистый молибден, подвергнутый дугово.му вакуумному или электроннолучевому переплаву, а так-ж<. сплавы молибдена. Легирование молибдена некоторыми элементами приводит к его упрочнению и повышению пластичности. Особенно эффективное влияние на молибден, так же как и на вольфрам, оказывает рений, который образует с ним широкую область твердых растворов. Рений сушественно упрочняет молибден, в то же время уменьшает его чувствительность к примесям внедрения и хладноломкости, повышает температуру рекристаллизации. Легирование молибдена небольшими количествами титана и циркония (до 1%) приводит к значительному его упрочнению при комнатной н повышенной температурах. Эти легирующие элементы образуют с углеродом, всегда присутствующим в молибдене, дисперсные частицы карбидов.  [c.242]

Согласно действующему положению о МПТШ в редакции 1960 г. [2] в области температур выше 1769° С имеются только три реперные точки, причем находятся они на значительном расстоянии друг от друга. Осуществление этих точек связано либо с применением дорогостоящих и сравнительно редких материалов (родий и иридий), либо требует применения специальных атмосферных условий (вольфрам). Поэтому изучение температуры плавления других веществ, которые могли бы служить в качестве вторичных реперных точек выше 2000° С, представляет значительный интерес.  [c.147]


Смотреть страницы где упоминается термин Вольфрам Области применения : [c.5]    [c.162]    [c.424]    [c.306]    [c.219]    [c.26]    [c.732]    [c.72]    [c.191]    [c.783]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.411 , c.412 ]



ПОИСК



Вольфрам

Вольфрам применение

Область применени



© 2025 Mash-xxl.info Реклама на сайте