Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование упругой устойчивости на моделях

ИССЛЕДОВАНИЕ УПРУГОЙ УСТОЙЧИВОСТИ НА МОДЕЛЯХ  [c.83]

Исследование потери устойчивости на упругих моделях может быть использовано в ряде задач для оценки критических нагрузок при упруго-пластических деформациях путем последовательного приближения.  [c.83]

Книгу условно можно разделить на три части. В первой части (главы 1, 2, 3) формулируются основные задачи исследования динамики и устойчивости механизмов с упругими связями, приводятся дифференциальные уравнения динамики механизмов с упругими связями на примерах простейших динамических моделей дается представление об устойчивости периодических режимов движения вибрационных и виброударных систем, вводятся основные понятия и определения (глава 1).  [c.8]


Расчетное определение критических нагрузок при потере устойчивости сложных деталей и конструкций вызывает значительные затруднения [8], [28]. Поэтому одновременно с исследованием напряжений и перемещений на моделях из материала с низким модулем продольной упругости (см. раздел 6) может возникнуть вопрос о применении этих моделей для оценки возможной местной и общей потери устойчивости конструкции, соответствующей данной модели. Так как материал модели отличается от материала натурной конструкции, то результаты, получаемые на такой модели, могут быть непосредственно использованы только в том случае, если потеря устойчивости в модели и в натуре будет происходить при напряжениях ниже предела пропорциональности. При изучении потери устойчивости за пределом упругости эксперимент ставится на натурной конструкции или ее модели, выполненной из того же материала.  [c.83]

ИССЛЕДОВАНИЕ ЛИНЕАРИЗОВАННОЙ МОДЕЛИ СИСТЕМЫ С ГИДРОТРАНСФОРМАТОРОМ НА УСТОЙЧИВОСТЬ ПЕРЕХОДНЫХ РЕЖИМОВ БЕЗ УЧЕТА УПРУГОЙ ПОДАТЛИВОСТИ ЭЛЕМЕНТОВ СИСТЕМЫ  [c.83]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]


Исследование упругой устойчивости пластинок под нагрузками различных типов и при различных краевых условиях было введено в практику судостроительного проектирования впервые при сооружении русских дредноутов ). Постановка линейного корабля в док на одном лишь вертикальном киле предъявляет высокие требования прочности и упругой устойчивости к поперечным переборкам, В связи с этим была разработана теория устойчивости пластинок, усиленных ребрами жесткости, о которой мы упоминали выше (см. стр. 495), а также поставлена серия испытаний на моделях размерами 4,5 X 2,1 м. В расчете на изгиб плоских перекрытий из соединенных между собой продольных и поперечных балок был использован метод Рэлея—Ритца ), позволивший получить для этой задачи достаточно точные решения.  [c.526]

Следующей важной задачей, изученной Д. И. Журавским, была задача упругой устойчивости тонких вертикальных стенок трубчатых мостов. Эксперименты Итона Ходкинсона и Уиллима Фейр-бейрна с моделями трубчатых мостов показали, что при размерах, которые выбирались для мостов Конуэй и Британия , вопросы упругой устойчивости имеют значение. Чтобы обеспечить необходимую устойчивость, в эти мосты были введены вертикальные ребра. Количество материала, используемого для этих ребер жесткости, было таким же, как и количество материала для стенок. Д. И. Журавский начинает свое исследование с рассмотрения решетчатых ферм и правильно заключает, что выпучивание стенок вызывается максимальным сжимающим напряжением, действующим в стенках под углом 45° к горизонтали, и рекомендует располагать ребра жесткости в направлении максимальных сжимающих напряжений. Для того чтобы доказать справедливость своей точки зрения, он сделал несколько очень интересных экспериментов с моделями, которые выполнялись из толстой бумаги, подкрепленной картонными ребрами жесткости. При выборе этих материалов он приводит интересное обсуждение английских экспериментов. Д. И. Журавский считает неправильным судить о прочности конструкции на основании величины предельной нагрузки, поскольку при нагрузке, достигающей этого предельного значения, напряженные состояния в Элементах конструкции могут отличаться от тех, которые имеют место в нормальных рабочих условиях. Он рекомендует производить испытания моделей при обстоятельствах, соответствующих условиям эксплуатации сооружений, и предлагает использовать для моделей материал с небольшим модулем упругости, с тем, чтобы деформации до предела упругости были бы достаточно большими и потому легко доступными для измерения. Используя свои бумажные модели, Д. И. Журавский имел возможность измерять деформации стенки и доказал, что наибольшее сжатие возникает под углом 45° к вертикали. Он имел возможность изучать также направление волн, которые образовались в процессе выпучивания стенок. Сравнивая эффективность усилений, он нашел, что модель с наклонными ребрами жесткости могла бы нести на 70% нагрузки больше, чем модуль с вертикальными ребрами. В то же время площадь поперечного сечения наклонных ребер оказывается в два раза меньше, чем у вертикальных ребер.  [c.650]

Предлагаемая книга содержит популярное изложение геометрической теории устойчивости упругих оболочек, основанной на некоторых результатах теории конечных и бесконечно малых изгибаний поверхностей. Наряду с известными результатами, содержащимися в монографии автора Геометрические методы в нелинейной теории упругих оболочек , в книгу вошли результаты исследований, выполненных в последние годы. В частности, здесь содержится полное решенйе задачи об устойчивости сферических оболочек ПОД внешним давлением без каких-либо предположений о характере выпучивания. В рамках принятой математической модели явления дано полное исследование потери устойчивости общей строко выпуклой оболочки, защемленной по краю, под внешним давлением. Рассмотрен вопрос о потере устойчивости цилиндрических оболочек при осевом сжатии и оценено влияние различных факторов на критическую нагрузку. Рассмотрены и другие вопросы. В отличие от упомянутой выше монографии здесь мы ограничиваемся сравнительно небольшим числом классических задач о потере устойчивости оболочек, но исследуем их более полно.  [c.4]


Л. Я. Айнола построил геометрически нелинейную теорию упругих оболочек типа Тимошенко на основе обобщенного вариационного принципа Гамильтона—Остроградского 13.2] (1965). Получены также уравнения в возмущениях применительно к исследованию динамической устойчивости начального состояния движения. Исходя из вариационного принципа для геометрически нелинейной теории упругости и вводя основные гипотезы модели Тимощенко, он вывел уточненные уравнения динамики гибких оболочек в криволинейных координатах [3.6] (1968).  [c.212]

В настоящей статье рассматриваются изгибные колебания гибких вертикальных роторов зонтичного типа в поле параллельных сил. Исследование выполнено применительно к полю сил тяжести. Динамическая модель ротора представляет собой дискретную упругую гироскопическую систему с невесомым валом, насаженнылш на него сосредоточенными массами и упруго-массовыми опорами. Число масс и опор конечное, но ничем не ограничено. Рассматриваются собственные и вынужденные колебания от дебаланса зонтичного ротора в поле сил тяжести в предположении, что в целом система устойчива.  [c.5]

Том второй посвящен нелинейным колебаниям механических систем. В нем приведены сведения о нелинейных колебаниях систем и рассмотрены их основные модели (консервативные, диссипативные, автоколебательные системы, системы с заданным внешним воздействием). Изложены. математические. методы изучения нелинейных колебаний, в то.м числе важнейшие методы исследования устойчивости. В отличие от известных руководств по нелинейным колебаниям то.м содержит раздел, в котором рассмотрены задачи о взаимодействии нелинейных колебательных систем с источниками возбуждения, проблемы синхронизации колебательных и вращ,атель-ных движений, виброперемещение и виброреология, теория виброударных и электромеханических систем, колебания сосудов с жидкостью, колебания твердого тела на нелинейно-упругих опорах.  [c.12]


Смотреть страницы где упоминается термин Исследование упругой устойчивости на моделях : [c.50]    [c.236]    [c.108]    [c.112]   
Смотреть главы в:

Напряжения и деформации в деталях и узлах машин  -> Исследование упругой устойчивости на моделях



ПОИСК



Исследование линеаризованной модели системы с гидротрансформатором на устойчивость переходных режимов без учета упругой податливости элементов системы

Устойчивость упругих тел

Устойчивость — Исследование



© 2025 Mash-xxl.info Реклама на сайте