Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дальнейшие выводы о давлении жидкости

Более сильным оказывается допущение о несжимаемости жидкости. Согласно (6.11) при R О скорость границы пузыря стремится к бесконечности. Когда эта скорость становится соизмеримой со скоростью звука в жидкости (для воды это примерно 1500 м/с), уравнение неразрывности несжимаемой жидкости, использованное при выводе формулы (6.1), становится неточным. Анализ процесса схлопывания с учетом сжимаемости жидкости показывает, что при изменении z от 1,0 до -0,01 сохраняются закономерности, следующие из решения Рэлея, т.е. справедливы уравнения (6.12), (6.16), (6.17). При дальнейшем схлопывании сжимаемость жидкости несколько сглаживает пики экстремального давления. Однако, как следует из табл. 6.1, при z = 0,01 экстремальные перепады давления уже достигают гигантских значений.  [c.245]


На рис. 23 приведена схема устройства для дозированной подачи брусков к станку ОФ-38А. Под давлением жидкости в гидросистеме станка поршень 3 опускается вниз до упора 4, вместе с ним переме-ща[ется шток 1, связанный с поршнем реечными передачами 2. Своим конусом шток производит предварительный разжим брусков до исходного состояния. В дальнейшем, при каждом ходе шпиндельной бабки вниз храповик 5 упирается в собачку 6, проворачиваясь при этом на 1,2 или 3 зуба. Вместе с ним проворачиваются червяк 8 и шестерня 9, установленная на конце винтового упора 4. Упор опускается, и поршень <3 следит за его перемещением. Каждый раз бруски в зависимости от регулировки храпового механизма разжимаются штоком на 0,15 0,30 или 0,45 мкм. Когда поршень упрется в торец гайки 10, разжим брусков прекратится, магнит 7 выведет собачку из соединения с храповиком, головка перейдет на режим выхаживания, продолжительность которого устанавливается реле времени. Когда цикл закончится, рукояткой (на схеме не показана) храповое колесо, а с ним и упор 4 выводятся в исходное состояние, контролируемое по шкале.  [c.72]

Дальнейшие выводы о давлении жидкости. Излагаемые ниже замечания касаются не только идеальной жидкости, но — с небольшими изменениями — и жидкостей с умеренной вязкостью. Однако первое замечание относится только к несжимаемой жидкости с постоянной плотностью.  [c.68]

Один из методов заполнения вискозиметра — вытеснение воздуха исследуемой жидкостью через верхнюю точку. Для этой дели был сделан дополнительно выход в верхней точке на горизонтальной защитной трубке. Заполнение вискозиметра предварительно деаэрированной жидкостью осуществлялось в следующей последовательности. Верхние выводы на вертикальной и горизонтальной защитных трубах были открыты. Вместо линии давления к установке присоединялась емкость с исследуемой жидкостью. Далее открывался вентиль, соединяющий емкость с установкой и жидкость под действием собственного напора начинала заполнять вискозиметр. Когда из верхней точки горизонтальной трубки протекало достаточное количество жидкости, верхняя точка уплотнялась. Уровень жидкости в вертикальной трубке, находящейся в верхнем положении, доводился примерно до верхнего резервуара. Затем перекрывали вентилем доступ жидкости из емкости в установку, после чего под действием столба жидкости во внешней вертикальной трубке жидкость начинала течь через капилляр, горизонтальную соединительную трубку и медленно заполняла капельную трубку. Преимущество такого заполнения заключалось в том, что через стеклянную вертикальную трубку и помещенную в ней капельную трубку можно было визуально следить за подъемом уровня жидкости. Далее, когда уровни жидкости в капельной и внешней вертикальной трубках выравнивались, их доводили до отверстия во внешнем резервуаре капельной трубки. Заполнить вертикальную трубку до конца не удается, так как в верхней части верхнего резервуара капельной трубки остается воздух. Поэтому дальнейшее заполнение продолжалось в следующей последовательности. Закрывался верхний выход вертикальной трубки и последняя поворачивалась на 90°, т. е. в горизонтальное положение. При этом отверстие в резервуаре капельной трубки оказывалось в верхнем положении и через него жидкость вытесняла оставшийся в резервуаре воздух. Затем защитная трубка вновь поворачивалась в вертикальное положение, открывался вентиль емкости и вискозиметр заполнялся жидкостью до появления ее в верхнем выходе вертикальной защитной трубки, после чего верхний  [c.170]


Теория гидравлического удара возникла в конце XIX века. Некоторые частные вопросы этой теории — скорость распространения волны давления — были разрешены рядом ученых Резалем (1876 г.), Кортевегом (1878 г.), Громекой (1883 г.) при объяснении физиологических (распространение пульса) и звуковых явлений. Но только в 1898 г. профессор Н. Е. Жуковский в своей классической работе О гидравлическом ударе в водопроводных трубах" дал общее решение задачи, т. е. установил связь между изменениями скорости и колебанием давления жидкости, которые распространяются с определенной скоростью вдоль трубопровода. Теория эта возникла в связи с изучением гидравлического удара в водопроводных трубах на Алексеевской водокачке в Москве. На основании общего решения задачи Н. Е. Жуковским была найдена формула повышения давления при прямом ударе, носящая его имя. Кроме вывода основных формул, Н. Е. Жуковский рассмотрел еще целый ряд теоретических и практических вопросов этого явления. В 1903 г. вышла работа итальянского инженера Ал-лиеви, в которой он развил, используя основные положения теории гидравлического удара, разработанной Н. Е.Жуковским теорию непрямого удара и дал ряд методов для решения практически важных задач. Дальнейшее развитие теории шло по пути решения различных частных задач, опытной про-  [c.9]

Прочность жидкости на разрыв зависит также от температуры. Очевидно, что при критической температуре она должна быть равной нулю. Лармор [37], а позднее Темперли [53] показали, что в соответствии с уравнением Ван-дер-Ваальса наибольшая температура, при которой жидкость может существовать при нулевом внешнем давлении, равна ее абсолютной критической температуры. При дальнейшем понижении температуры жидкость будет существовать, если отрицательные давления будут увеличиваться. Таким образом, существует теоретическое объяснение повышения прочности жидкости на разрыв при понижении температуры, справедливое для любой жидкости. Для воды теоретическая предельная температура равна 273°С. При более высоких температурах жидкость будет существовать только при положительном внешнем давлении. На фиг. 3.1, заимствованной из работы Бриггса [8], показаны экспериментальные данные для кипяченой воды. Данные для низких температур (от О до 50°С) получены в экспериментах с вращающимися трубками [7], а для высоких температур (от 264 до 270 °С)—в статических экспериментах по предельному перегреву воды в капиллярах [8]. В обоих случаях использовались капиллярные трубки, вытянутые непосредственно перед опытом. Пунктирная часть кривой на фйг. 3.1 получена путем экстраполяции, при которой ориентиром служила точка нулевого предела прочности при критической температуре (374 °С). Эти результаты качественно согласуются с выводами, сделанными на основе уравнения Ван-дер-Ваальса.  [c.76]

Изучение механизма пузырчатого кипения свидетельствует о том, что тепло передается отг.поверхности к жидкости главным образом пузырями, являющимися дополнительными турбулизаторами [6, 3]. Уравнения для расчета теплоотдачи при пузырчатом кипении и критического теплового потока частично зависят от скорости роста пузыря. Эллион [3] использовал для вывода уравнения измеренную скорость роста. Фостер и Зубр 1. 2] рассчитали скорость роста, допуская, что пузыри росли в первоначально равномерно перегретой однородной жидкости. В этих условиях пузыри продолжали расти без ограничения, в то время как в недогре-той жидкости пузыри растут только до максимального размера. Розенов [8] и Розенов и Гриффитс [7] предполагали, что скорость роста не является важной переменной в уравнении. Дальнейшие успехи в деле выявления зависимостей по теплоотдаче при кипении и лучшее понимание этого процесса зависят от получения кривых роста пузырей в условиях пузырчатого кипения. Особенно целесообразно выяснить степень влияния давления системы и недогрева массы жидкости на максимально достижимый размер пузыря и длительность времени, за которое пузырь достигает этого размера.  [c.283]


В 1848 г. Джоуль на собрании Манчестерского философского общества выступил с докладом Некоторые замечания о теплоте и о строении упругих жидкостей , который в дальнейшем был напечатан в трудах этого Общества. Основываясь на результатах своих опытов по определению механического эквивалента теплоты и опытов по исследованию особенностей адиабатного сжатия и расширения воздуха, Джоуль высказал положение, что теплота и механическая сила обратимы одна в другую и что теплота является живой силой весомых частиц. Это проливает свет на строение упругих жидкостей, так как оно показывает, что теплота упругих жидкостей представляет собою ту механическую силу, какой они обладают . И дальше упругая сила или давление должны представлять собою эффект движения частиц, из которых состоит всякий газ . Выводы Джоуля по существу говорили об одно.м из основных положений кинетической теории газа. В 1856 г. была напечатана работа Кренига Очерки теории газов . После этой работы было опубликовано несколько работ Клаузиуса, посвященных кинетической теории газов, а затем работы Максвелла, Лошмита и др., которые и заложили основу этой теории.  [c.29]

Дашные табл. В. 4 показывают, что вода не строго подчиняется закону Гука —ее модуль упругости изменяется с увеличением давления. Однако эти изменения Н вели.ки. В среднем для практических расчетов модуль упругости воды можно принимать равным 21 ООО кГ1см , модуль упругости нефтепродуктов— 13 500 кГ1см . Колебания величин модулей упругости воды и нефтепродуктов показывают, что объем капельной жидкости при обычных небольших изменениях давления меняется незначительно. В подавляющем большинстве практических расчетов жидкость можно рассматривать как несжимаемое тело и только в отдельных вопросах механики жидкого тела, например при изучении гидравлического удара, следует учитывать изменение ее объема под действием давления большой величины. В дальнейшем во всех исследованиях и выводах (кроме случаев, когда необходимо бывает учесть сжимаемость жидкости) жидкость без особых оговорок рассматривается как несжимаемая.  [c.13]

Проиллюстрируем вывод одномерного эволюционного уравнения на примере двумерного возмущенного течения в плоской струе несжимаемой жидкости, граничащей с твердой стенкой [21, 276]. Будем считать время декартовы координаты х, у, компоненты вектора скорости м, у и давление р обезразмеренными соответственно по величинам , и, р и (Ь, и - характерная длина и скорость струи, р - плотность несжимаемой жидкости). При больших Ке = и 1 V (V - кинематическая вязкость) пристеночная струя аналогична пограничному слою, а невозмущенный профиль (/о продольной компоненты скорости в струе зависит от переменной = Ке . Дальнейший анализ основывается на свойствах функции и , вытекающих из вида изучаемого движения, а именно на выходе из струи (при  [c.90]

При выводе волновых уравнений мы до сих пор предполагали, что на жидкость не действуют сторонние силы. Учет их приводит к появлению дополнительного слагаемого в правых частях (1.1) и (1.6). Сторонней силой, всегда действующей на жидкость, является сила тяжести, играющая важную роль в формировании стратификации (z) и p(z) - не возмущенных параметров в атмосфере и океане. Сила тяжести оказывает влияние на распространение звука и непосредственно волновые уравнения при условии Vpo О не сводятся к (1.11) и (1.15). На низких частотах сила тяжести обусловливает существование специфических акустико-гравитационных волн, играющих важную роль в динамике-атмосферы и океана (см. [54, 105, 531]). Однако на характерных для звука частотах/ 10 Гц влияние непостоянства статического давления ро оказывается гфенебрежи-мо малым (см., например[54, 245]), и мы не будем его учитывать в дальнейшем.  [c.12]

Каменный уголь способен при продолжительном хранении самовозгораться. Для наблюдения за I устраивают 4°-ные трубки с отверстиями, идущие от низа ямы до палубы. Время от времени в эти трубки опускают термометры. Для тушения возникшего пожара применяют пар, т. к. он быстро заполняет весь объем ямы, чем способствует быстрому тушению пожара. Пар особым трубопроводом подводят в нижние части угольных ям. На судах, где главные двигатели работают на нефти или иной легко воспламеняющейся жидкости, а в особенности на судах, перевозящих подобный жидкий груз, вода для тушения пожара является непригодной. На нефтеналивных судах для тушения пожара применяются инертные газы углекислота ( Oj), азот и четыреххлористый углерод, причем наиболее часто применяется СО . Т.к. она является ядовитым газом, то применение ее для помещений, где могут находиться люди, должно производиться с большой осторожностью. Для полного прекращения пожара в помещение достаточно ввести СО 2 в количестве ок. 20—25% объема помещения. Существует несколько патентов для тушения пожаров по указанному принципу. Наибольшее применение на нефтеналивных судах получил патент Lux . Батарея из баллонов с жидкой Oj разбивается на ряд групп, обслуживающих определенные участки судна,куда и проводят труб-ки. Управление запорными кранами выводится в-центральный пост, откуда можно заполнить газом любое помещение. Бутыли с СО а в жидком состоянии под давлением в 50 aim при 15 имеют патентованное приспособление, позволяющее ее в жидком виде довести до места , пожара. Без подобного приспособления СО, стала бы испаряться в отростках магистрали, вследствие чего возникла бы опасность замерзания и закупрривания трубок в нужный момент, Каждая бутыль заключает 20,5 кз жидкой Oj и может заполнить объем в 51 м . С момента начала пожара достаточно 10 мин., чтобы заполнить СОа в се помещение. Отдельные. группы бутылей соединяются между собой системой клапанов, так что при истощении СОа в одной группе ее можно подать из других. Применение СОа не наносит вреда ни самому помещению ни грузам и предметам, находящимся в нем. В несколько видоизмененном виде эта система м. б. использована и для тушения пожара в полузакрытых помещениях вроде кочегарного отделения. Для тушения горящей жидкости в открытых местах применяются пеногонные аппараты (сш. -Пенное тушение). При горении огнеопасных жидкостей пена плавает по поверхности жидкости, изолируя ее от доступа воздуха. Цена нейтральна и поэтому безвредна, так что предметы, покрытые пеной, по удалении ее пригодны к дальнейшей службе. Чтобы потушить горящую нефть или иную горящую жидкость, необходимо покрыть ее слоем пены.толщиной ок. 13 см. Эта система м. б. приспособлена для тушения совершенно закрытых помещений нефтяных ям, грузовых трюмов и т. п. Установка м. б. централизована, причем раствор подается в требуемое помещение под  [c.146]



Смотреть страницы где упоминается термин Дальнейшие выводы о давлении жидкости : [c.170]    [c.169]    [c.157]    [c.76]   
Смотреть главы в:

Гидроаэромеханика  -> Дальнейшие выводы о давлении жидкости



ПОИСК



Вывод

Вывод-вывод

Дальнейшие выводы

Жидкости см Давление



© 2025 Mash-xxl.info Реклама на сайте