Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частицы траектории в вихревом потоке

Траектории частиц в вихревом потоке. В лагранжевой системе координат уравнение (6.41) принимает вид  [c.339]

Рассмотрим вначале случаи, когда вязкость на твердой границе системы во внимание не принимается, но учитывается взаимодействие между фазами. Сюда относятся решения для траекторий частиц, обтекающих препятствие (разд. 5.2). Другие расчеты траекторий твердых частиц, движущихся в поле вихревого потока циклонного пылеуловителя, были выполнены в работах [701, 794]. В этих работах предполагалось, что твердые частицы при тангенциальном вводе в верхнюю часть коллектора уже имеют скорость, равную скорости жидкости. В работе [837] исследована система  [c.338]


По способу образования и структуре поверхности контакта ЦТА относится к барботажных аппаратам. В нем активным агентом является газ, который пересекает слой жидкости, диспергируя ее и образуя поверхность контакта. При малой скорости в барботажных аппаратах газ образует поверхность контакта в виде всплывающих пузырей. При больших скоростях газа поверхность контакта приобретает капельную структуру, что характерно и для ЦТА, в котором скорости газа значительно больше скорости всплытия пузырей. Однако это относится только к гидродинамике самого слоя газожидкостной смеси, если рассматривать поперечное течение газа со скоростью Wr. В остальном имеются существенные отличия. На входе газа в слой между решеткой и кольцевым вращающимся слоем образуется газовая прослойка, обеспечивающая равномерное распределение газа и равномерную радиальную скорость по всему слою. Плавный, безударный вход газа в слой уменьшает гидродинамическое сопротивление. В то же время перемещение слоя газожидкостной смеси со значительными окружными скоростями и интенсивное перемешивание частиц жидкости с потоком газа вследствие вихревого движения приводит к дополнительной турбулизации потоков во всем объеме слоя, что способствует интенсификации процессов тепло- и массообмена. Наличие тангенциальной составляющей скорости газа увеличивает продолжительность контакта газа с жидкостью, так как движение частиц жидкости происходит по спиральной траектории и за несколько витков частицы многократно обтекаются потоком газа. Увеличение веса жидкости в поле центробежных сил препятствует образованию пены, так как поверхностного натяжения становится недостаточно для ее формирования. Отсутствие пены в ЦТА, сковывающей подвижность отдельных мелких частиц жидкости и ограничивающей скорость газа (по условиям выноса пены из аппарата), также позволяет повысить интенсивность тепло- и массообмена.  [c.15]

Вращательное движение частицы вокруг осей, проходящих, через частицу, называют вихревым движением. Опыт показывает, что во всех случаях движения реальной (вязкой) жидкости все поле потока или часть его являются вихревыми. В тех областях течения, где вихревое движение частиц отсутствует, угловая скорость вращения равна нулю (оз = 0). В этих областях частицы жидкости могут двигаться по траекториям любой формы, деформируясь при этом, но не вращаясь относительно своих осей.  [c.17]


Расчеты и эксперименты показывают, что в результате описанной конденсации и роста размер образующихся капель составляет десятые доли микрометра. Такие капли легко увлекаются потоком пара, проносятся сквозь проточную часть, не вызывая каких-либо эрозионных повреждений. Однако, к сожалению, в результате столкновений отдельных мелких капель и их слияния, вихревого движения потока за кромками сопловых лопаток за демпферными связями и в других зонах, возникают капли и более крупного размера. Обладая большей инерцией, они отклоняются от траектории частиц пара, попадают на поверхность сопловых и рабочих лопаток и, сливаясь, образуют водяные пленки толщиной 20—50 мкм. Срывающиеся и дробящиеся водяные пленки являются источниками крупно дисперсной влаги с радиусом капель, достигающим 100 мкм. Такие капли часто являются неустойчивыми и под действием парового потока дробятся.  [c.458]

В случае горизонтального пневмотранспорта (рис. 55) сила Р действует перпендикулярно направлению силы тяжести Q, и поэтому частица падает вниз. Однако, достигнув стенки (дна) трубопровода, частица под влиянием силы Р начинает катиться или скользить по этой стенке. В связи с наличием у стенок значительного градиента скорости возникает поперечная подъемная сила, которая поднимает частицу кверху, откуда она затем падает по параболической траектории. Непосредственной причиной подъема частиц со дна трубы может явиться и вихревое движение воздуха, возникающее при соприкосновении воздушного потока с лежащими на дне частицами.  [c.75]

С точки 5 вдоль направления нормали к границе, направленной внутрь области, сходит первый свободный вихрь интенсивностью уь равной циркуляции присоединенного вихря, расположенного в точке 5. Заметим, что определение точки отрыва вихревого слоя с гладкой поверхности является проблемой. Она решается достаточно сложно с учетом вязкости и с привлечением уравнений пограничного слоя. Выдвинем в качестве гипотезы следующее кинематическое условие для отрыва потока отрыв вихревого слоя осуществляется между расчетными точками с разными знаками тангенциальной составляющей скорости. Строго говоря, отрыв должен происходить по касательной к поверхности. Однако, в силу дискретности модели это осуществить не удается, поскольку оторвавшийся вихрь может вылететь за границу области течения. Поэтому первый свободный вихрь помещается над точкой отрыва 5 на расстоянии равном шагу дискретности к 2. Затем он движется по траектории жидкой частицы. Возможно, что с течением времени точка 8 будет менять свое положение и соответственно в каждый момент времени необходимо ее расположение определять заново. Естественно предположить, что при значительном увеличении I точка 8 уже не будет плавать .  [c.583]

При обтекании потоком местного сопротивления искривляются линии тока, изменяется поле скоростей, во многих случаях происходит отрыв потока, образуются области, заполненные мелкими и крупными вихрями, которые называют вихревыми, или водоворотными, областями. На рис. 6.1 и 6.2 эти области представлены в виде осредненных линий тока, а не траекторий частиц жидкости. На рис. 6.2 приведены также эпюры осредненных скоростей до и после диафрагмы. Эпюра за диафрагмой знакопеременная с нулевым значением скорости на стенках трубы и в центре водоворотных областей.  [c.99]

В определениях понятия турбулентность , сформулированных разными авторами, в той или иной степени отражаются рассмотренные выше особенности турбулентного движения. Дж. И. Тейлор и Т. Карман /287, 371/ дают следующее определение турбулентности Турбу-лентность - это неупорядоченное движение, которое в общем случае возникает в жидкостях, газообразных или капельных, когда они обтекают непроницаемые поверхности или же когда соседние друг с другом потоки одной и той же жидкости следуют рядом или проникают одн[н в другой . И. О. Хинце несколько уточняет определение турбулентности /253/ Турбулентное движение жидкости предполагает наличие неупорядоченного течения, в котором различные величины претерпевают хаотическое изменение во времени и по пространственным координатам и при этом могут быть выделены статистически точные их осред-ненные значения . Р. Р. Чуг аев дает такое определение /256/ Движение турбулентное - движение кидкости, при котором частицы жидкости перемешиваются по случайным неопределенно искривленным траекториям, имеющим пространственную форму при этом движение траекторий частиц, проходящих в разные моменты времени через неподвижную точку пространства, имеют различный вид данное движение носит беспорядочный, хаотичный характер и сопровождается постоянным как бы поперечным перемешиванием жидкости, причем это движение характеризуется наличием пульсаций скорости и пульсаций давления . В терминологии АН СССР Гидромеханика /10/ определение турбулентного движения дается так Турбулентное движение - движение жидкости с пульсацией скоростей, приводящей к перемешиванию ее часггиц . Более емким является определение, данное М. Д. Миллионщи-ковым Турбулентный режим - это статистически упорядоченный обмен, вызванный вихревыми образованиями различного масштаба /148/.  [c.13]



Смотреть страницы где упоминается термин Частицы траектории в вихревом потоке : [c.532]    [c.427]   
Гидродинамика многофазных систем (1971) -- [ c.339 ]



ПОИСК



Вихревые усы

Поток частиц

Траектория

Траектория е-траектория

Траектория частицы

У-поток а-траектория

Частицы вихревые



© 2025 Mash-xxl.info Реклама на сайте