Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристика тепловой схемы

При создании надежной и высокоэкономичной паротурбинной установки необходимо провести громоздкие расчеты по оптимизации структуры и параметров тепловой схемы турбоустановки, конструкции проточной части, исследованию статических характеристик тепловой схемы и проточной части турбоустановки и т. д. Эти расчеты требуют большой затраты инженерного труда. Необходимый при этом объем вычислительных работ препятствует совершенствованию турбоустановок. Работа по математическому моделированию паротурбинных установок проводится в двух основных направлениях. Одно из этих направлений — аналитическое, которое возникло значительно раньше второго направления — численного.  [c.21]


Ниже приведены некоторые характеристики тепловой схемы.  [c.247]

ХАРАКТЕРИСТИКА ТЕПЛОВОЙ СХЕМЫ  [c.291]

Кроме того, следует поддерживать постоянным os q> генератора и строго соблюдать предусмотренную условиями тепловой характеристики тепловую схему установки.  [c.381]

По совокупности выявленных решений (по простоте тепловой схемы преобразования тепла, теплофизическим и физическим характеристикам быстрых реакторов, наработке вторичного ядерного горючего, компактности  [c.5]

При выборе оптимальных параметров тепловой схемы и других характеристик АЭС в целом одним из критериев качества является стоимость установленного киловатта [5.11]. Этот же критерий можно принять и для оптимизации внутренних параметров таких крупных единиц оборудования АЭС, как, например, комплекс конденсатор — система водоснабжения. В этом случае мощность, необходимая на охлаждение конденсатора, уже не является ограничением при поиске оптимальных параметров, но она должна входить в минимизируемый критерий качества. Последний можно представить в следующей форме  [c.188]

Полную тепловую схему вновь проектируемой электростанции составляют на основе расчета принципиальной тепловой схемы и выбора основного II вспомогательного теплового оборудования электростанции. При выборе оборудования определяют количество аппаратов и их основные технические характеристики производительность и параметры.  [c.242]

Как уже указывалось выше, от совершенства термодинамического цикла зависит предел достижимой тепловой экономичности энергетической установки, но одновременно от характеристики цикла зависят основные требования к его рабочему телу. Поэтому сравнительный анализ термодинамических циклов обычно предшествует рассмотрению требований к рабочему телу, тепловых схем и конструктивных характеристик отдельных элементов энергетических установок.  [c.20]

В книге дается обобщение опыта проектирования, производства и эксплуатации оборудования парогазовых установок. Анализируются рабочие процессы, термодинамические и техникоэкономические характеристики современных и будущих парогазовых установок, их оптимальные параметры и тепловые схемы.  [c.2]

Оптимизации циклов, тепловых схем и параметров ПГУ посвящены работы [4—10 25 27 30 33 35 42 62 73 74 87 93]. Газовая ступень ПГУ исследовалась в работах [29 30 65 86 94 и др.], паровая ступень — в работах [4 31 33 и др.]. Технико-экономические характеристики ПГУ приведены в работах [1—3 15—18 20—23 26 36 49 50 и др. ]. Созданию и освоению отечественных ПГУ посвящены работы [56—58 62 64 66 67 69 70 92 103 и др. ].  [c.11]


При выборе схемы, параметров и конструкции газотурбинного агрегата для ГТУ учитываются оптимальный к. п. д. установки на номинальном и переменном режимах, возможный предел начальной температуры газа, вид топлива, назначение установки, требования компоновки основного и вспомогательного оборудования. Паровая турбина для ПГУ обычно выбирается из числа типовых (стандартных), а ГТУ выбирается на основе анализа тепловой схемы ПГУ, включающего рассмотрение подходящих по расходу и давлению воздуха типовых газовых турбин или новых газовых турбин с оптимальными для данной схемы ПГУ характеристиками. Выбор типовой или подлежащей проектированию новой ГТУ производится путем сопоставления техникоэкономических показателей всей ПГУ.  [c.101]

Разделительное давление. Для внешней сепарации влаги требуется вывод из турбины и ввод в нее огромных объемов пара. Практически это можно выполнить в местах деления турбины на части. Вместе с тем наибольший экономический эффект от внешней сепарации и удаления влаги получается при определенных давлениях. Эти оптимальные давления зависят от начальных и конечных параметров пара, от к. п. д. отсеков турбины и от наличия или отсутствия ПП и его эффективности. Поэтому вопрос об оптимальном разделительном давлении должен решаться с учетом особенностей тепловой схемы, конкретных характеристик турбины и возможностей размещения ее проточной части по цилиндрам.  [c.113]

Отрицательное влияние паропарового промежуточного перегрева и системы регенерации оказывается соизмеримым с положительным влиянием остальных факторов. Вследствие этого результирующий термодинамический эффект для каждого конкретного энергоблока такого типа определяется особенностями его тепловой схемы и характеристиками основного оборудования. Поскольку характеристики парораспределительных органов турбины, питательных насосов и др., а также величина недогрева в промежуточном перегревателе и регенеративных подогревателях могут существенно различаться даже для однотипных энергоблоков, имеющих паропаровой промежуточный перегрев, при сравнении различных программ их регулирования могут быть получены неоднозначные результаты.  [c.152]

Сравнение тепловой экономичности теплофикационных ПТУ при различных программах регулирования. Выше выполнен в общем виде термодинамический анализ, выявляющий общие качественные закономерности изменения удельного расхода теплоты при переходе к СД. Для количественной оценки эффективности СД он нуждается в дополнении детальными расчетами тепловых балансов применительно к конкретным агрегатам с тем, чтобы учесть их особенности (характеристики регулировочных ступеней, питательных насосов и их приводов, тепловые схемы, многоступенчатый подогрев сетевой воды и пр.). Ниже приведены резуль-  [c.176]

Оптимизация конструктивно-компоновочных характеристик элементов установки и параметров тепловой схемы, имеющих дискретный характер изменения, представляет собой сложную задачу нелинейного дискретного программирования. В настоящее время отсутствуют универсальные и достаточно строгие методы решения задач этого класса. Анализ ряда приближенных методов решения задачи нелинейного дискретного программирования показал, что наиболее целесообразен алгоритм направленного последовательного поиска, сочетающий в себе метод покоординатного спуска и элементы случайного поиска (см. 1 главы 2). Нарушения нелинейных технических ограничений, возникающие при изменении дискретных параметров, в этом алгоритме устраняются в результате соответствующей корректировки непрерывно изменяющихся параметров с помощью вспомогательного алгоритма поиска допустимого решения. В некоторых частных случаях для решения задачи нелинейного дискретного программирования целесообразно применение идей метода динамического программирования (см. 2 главы 2).  [c.11]

К совокупности относятся все термодинамические, расходные и некоторые конструктивные параметры. К совокупности Хд принадлежат дискретно изменяющиеся конструктивные параметры, а также признаки вида тепловой схемы, конструкций и компоновок оборудования, например диаметр трубопровода, характеристики (допускаемое напряжение и т. д.) сортов металла, число регенеративных отборов в паровой турбине, тип пучка труб теплообменной поверхности (шахматный или коридорный), схема включения теплообменной поверхности (прямоток или противоток).  [c.16]


Особенностью таких однородных групп узлов, с одной стороны, является взаимозаменяемость в процессе их проектной оптимизации, а также возможность изменения их количества, направленности процессов по участкам схемы теплообмена, последовательности расположения элементов и других компоновочных преобразований без существенного изменения общей конфигурации термодинамического цикла. Это создает возможности взаимосвязанных перестановок элементов и сравнительно свободного перемещения в пределах их однородной группы. С другой стороны, любые компоновочные преобразования отличаются дискретным либо комбинаторным характером изменения признаков вида тепловой схемы и типов конструкций. Это, а также сложность и трудоемкость теплотехнических расчетов служат причиной неразработанности методов решения задач оптимизации конструктивно-компоновочных параметров и характеристик оборудования и технологической схемы теплоэнергетических установок.  [c.40]

Комплексная оптимизация теплоэнергетических установок имеет целью выбор термодинамических и расходных параметров рабочих процессов установки, конструктивно-компоновочных параметров и характеристик элементов оборудования, а также вида тепловой схемы, которым соответствует минимум расчетных затрат по установке. Разработанные к настоящему времени методы математического моделирования и комплексной оптимизации теплоэнергетических установок применимы для достаточно эффективного выбора термодинамических, расходных и конструктивно-компоновочных параметров установки с фиксированной или изменяемой в узком диапазоне тепловой схемой. Решение более общей задачи, включающей оптимизацию вида тепловой схемы установки, встречает серьезные трудности в создании эффективного метода расчета тепловых схем установок и в разработке метода оптимизации вида схемы.  [c.55]

Многообразие известных в настоящее время типов реакторов и АЭС, значительно отличающихся топливным циклом, теплоносителями, требованиями к рабочим веществам, оборудованием, затрудняет выбор одного или нескольких наиболее перспективных типов АЭС для дальнейшего развития атомной энергетики. Для обоснованного выбора необходимы оптимизация параметров и показателей каждого из возможных типов АЭС, определение рациональных тепловых схем, перспективных типов оборудования и его оптимальных конструктивных характеристик.  [c.77]

Математическая модель блока АЭС с водоохлаждаемым реактором для возможности исследования двух указанных типов АЭС должна содержать описание оборудования, присущего обоим типам АЭС с учетом специфических ограничений на структуру тепловой схемы (связанных с различными требованиями к качеству воды), ограничений на параметры рабочего тела и конструктивные характеристики оборудования. Полная математическая модель блока АЭС, реализованная в виде единого неделимого алгоритма, при большом числе элементов и оптимизируемых параметров, при ограничениях на термодинамические и конструктивные параметры была бы излишне громоздкой и неудобной для исследований и оптимизации. Вместе с тем можно выделить в технологической схеме АЭС рассматриваемых типов несколько частей, взаимосвязи между которыми или слабы, или немногочисленны. Это дает возможность без ущерба для полноты и точности исследований разделить математическую модель теплосиловой части АЭС на несколько отдельных подмоделей, исследования по которым могут быть проведены с гораздо меньшей затратой времени, так как в каждой из подмоделей число исследуемых (и оптимизируемых) параметров резко сокращается по сравнению с полной моделью. Исследование таких частей АЭС, особенно для параметров, являющихся внутренними для данной части (скорость воды в трубах теплообменника, диаметр труб и т. д.), может быть выполнено более подробно. Кроме того, исследования отдельных частей АЭС могут иметь и самостоятельное значение.  [c.79]

Комплексная оптимизация теплоэнергетических установок имеет Целью выбрать термодинамические и расходные параметры рабочих процессов, конструктивно-компоновочные характеристики элементов оборудования, а также вид тепловой схемы, которым соответствует минимум расчетных затрат по установке. Минимум расчетных затрат является критерием оптимальности параметров при условии неизменности энергетического эффекта от применения установки в энергосистеме.  [c.102]

Состав характеристик (параметров) каждой группы и основные взаимосвязи между ними схематически показаны на рис. 9.1. Как видно из этого рисунка, выбор оптимальных внутренних параметров ТЭУ тесно связан с системными параметрами ТЭС и системными факторами через обобщенные характеристики ТЭУ. Схема представляет по существу принципиальную информационную модель рассматриваемой задачи. Такая модель позволяет выявить состав исходной и искомой информации и проследить их взаимосвязи. Так, например, термодинамические параметры ТЭУ и структура ее тепловой схемы определяют уровень тепловой экономичности и маневренные свойства установки, что в свою очередь обусловливает выбор режима ее работы и эксплуатационные издержки. В то же время режим использования каждой установки связан с режимами работы других электростанций и экономичностью эксплуатации ЭЭС в целом. Аналогично устанавливается цепочка взаимосвязей в обратном направлении от режима электропотребления и структуры ЭЭС к оптимальному режиму использования отдельных ТЭУ и далее к выбору рационального уровня тепловой экономичности и внутренних параметров установки. С помощью информационной модели можно сформировать и множество других цепочек и ветвлений информации.  [c.195]

По своему месту в комплексном исследовании больших развивающихся систем в энергетике данные задачи примыкают, с одной стороны, к исследованиям электроэнергетических систем (к задачам оптимизации их структуры и управления развитием в целом), детализируя и уточняя соответствующие решения по развитию ТЭС с другой — к задачам выбора оптимальных циклов и параметров теплоэнергетических установок, играя здесь роль информационного звена и конкретизируя объективные предпосылки оптимизации (путем выбора вида тепловой схемы ТЭУ, основных энергоэкономических характеристик и условий ее функционирования в энергосистеме).  [c.196]


Теплообменник, вынесенный за пределы газохода, включается по первичному пару между радиационной и конвективной ступенями пароперегревателя. В этом заключается основное преимущество рассматриваемой схемы. Дело в том, что и для вторичного перегрева желательна по возможности стабильная характеристика, т. е. слабая зависимость тепловосприятия перегревателя от нагрузки котла. В некоторых случаях предпочтительна даже радиационная характеристика. Между тем выполнение настенного радиационного вторичного пароперегревателя почти не встречается в современных котлах. Это связано в основном со значительным превышением температуры стенки перегревателя над температурой пара давлением 25— 40 аг и с желательностью упрощения тепловой схемы блока.  [c.182]

Настоящая работа посвяш ена вопросам улучшения техникоэкономических характеристик именно традиционных методов производства электроэнергии в наиболее простых (по тепловой схеме, конструкции и в эксплуатации) энергетических (и транспортных) парогазотурбинных установках, отличающихся от обычных газотурбинных установок лишь наличием системы впрыска в компрессоре.  [c.4]

Ниже мы рассмотрим более подробно вопросы комплексных промышленных исследований на головных агрегатах как наиболее сложных из вышеуказанных. Основными целями комплексных исследований головных образцов турбин являются определение на начальном этапе освоения основных тепловых характеристик турбины и элементов тепловой схемы, в том числе получение данных для разработки типовых энергетических характеристик  [c.27]

Важный шаг в применении КИМ к анализу тепловых схем теплоэлектроцентралей сделан в [12], где исходя из -изложенных выше особенностей характеристик турбин типов ПТ и Т предложено численное значение КИМ для теплоты щ паре иижнего теплофикационного отбора устанавливать сходя из рассмотренной выше эмпирической зависимости Л цнд расхода пара в часть низкого давления  [c.172]

Изучение влияния влажности на характеристики отдельных (в том числе периферийных) сечений лопаток последних ступеней в МЭИ проводилось на двухвальной экспериментальной турбине (рис. 5-26). Тепловая схема и схема подготовки влажного пара этой установки аналогичны схеме экспериментальной турбины, описанной выше (см. рис. 5-6), однако в последней ступени увлажнения II применены форсунки с паровым дутьем, которые позволяют получить модальный размер частиц влаги м= 15 40 мкм.  [c.117]

Наиболее полные данные по энергетическим характеристикам турбины, носящие нормативный характер, содержатся в типовых энергетических характеристиках, выпускаемых Союзтехэнерго. В состав типовых энергетических характеристик турбин включаются диаграммы режимов с необходимыми поправками для приближенных оценок показателей турбоустановки. Типовые характеристики дают зависимости Do=f N )-, Сту=/( э). которые действительны при определенных условиях Do=-Dn.B, т. е. не учитываются продувка и отпуск пара из отборов турбины на собственные нужды параметры свежего пара и промежуточного перегрева — номинальные тепловая схема полностью соответствует расчетной  [c.135]

В следующих разделах в качестве примера приведены численные значения исходных данных одного из вариантов, а общие для всех вариантов характеристики тепловой схемы обозначены полужирньш курсивом.  [c.7]

Ниже изложена методика проверочного теплового расчета, выполняемого с целью определения характеристик рабочего тела и дымовых газов для серийно выпускаем1)1х агрегатов. Проверочный тепловой расчет следует проводить после составления и расчета тепловой схемы источника теплоснабжения, когда известны следующие данные производительность котельного агрегата  [c.78]

Ранее были рассмотрены так называемые разомкнутые циклы ГТУ, в которых продукты сгорания после раширения в газовой турбине выбрасываются в атмосферу. Таким образом, рабочее тело в цикле все время меняется. Существуют циклы, в схеме которых циркулирует неизменное количество рабочего тела. Такие циклы называются замкнутыми. Принципиальная тепловая схема ГТУ с замкнутым циклом представлена на рис. 93. В качестве рабочего тела в этих циклах может использоваться воздух или другой газ с лучшими термодинамическими характеристиками (более высокой, чем у воздуха, теплоемкостью, большим показателем адиабаты и др.), например гелий, аргон, водород, фреон. Подогрев рабочего тела до требуемой температуры производится в специальном нагревателе с внешней топкой, поэтому в ГТУ замкнутого цикла можно сжигать твердое топливо, что практически невозможно в ГТУ открытого цикла.  [c.212]

По этим программам на ЛМЗ, УТМЗ, ХТГЗ, в МЭИ и других организациях выполнены расчеты, связанные с определением статических характеристик различных турбоустановок, диаграмм режимов и выборов оптимальных параметров, схем и конструкций этих энергоустановок, а также пароохладителей по схемам Виолена и Ри-кара. Эти исследования проводятся путем многовариантных расчетов, причем время расчета одного варианта тепловой схемы конденсационной турбоустановки на ЭВМ типов БЭСМ-4, М-220 составляет несколько минут.  [c.36]

В процессе рабочего проектирования при модернизации турбоустановки К-300-240 ХТГЗ было выполнено на ЭВМ Урал-4 за 10—12 ч 35 вариантных расчетов схемы [Л. 33]. Эти расчеты были выполнены по программе, составленной на основе математической модели тепловой схемы турбоустановки [Л. 28]. Анализ результатов расчетов показал, в частности, что на установке возможно получение дополнительной пиковой мощности при отключении одного-двух подогревателей высокого давления в номинальных условиях при расходе свежего пара 250 кг/с. Кроме того, была получена универсальная поправочная кривая на вакуум и основные режимные характеристики турбины К-300-240 (при изменении начальных и конечных параметров), что в конечном счете позволило улучшить маневренные свойства блоков с учетом режимных требований энергосистемы.  [c.37]

Работы, начатые в тот период под руководством А. Н. Ложкина в ЦКТИ, привели к получению полных тепловых характеристик подобных установок, определению целесообразных тепловых схем и выработке типов специальных элементов оборудования [Л. 1-11, 12].  [c.16]

Характеристика котельного агрегата станции определяется не только требованиями к его проивводительности, изложенными выше, но и дополнительными условиями, налагаемыми тепловой схемой станции. С другой стороны, выбор определенного типа котельного агрегата может потребовать введения в тепловую схему дополнительных элементов.  [c.129]

Следует при этом заметить, что в ряде случаев максимальная тепловая экономичность цикла не является определяюш,им или единственным критерием при выборе его рабочего тела. Так, при выборе оптимального цикла и тепловой схемы атомных энергетических установок решающее значение имеют характеристики топливного цикла и специфические требования к рабочим телам и теплоносителям, связанные с их поведением в активной зоне в первом, а иногда и во втором контуре ядерпой установки.  [c.20]

Поэтому в качестве определяющих параметров промежуточного пере-грева пара приняты давление перегреваемого пара, недогревы пара до температуры греющего пара в каждой из ступеней перегрева и давление отборного греющего пара. Поскольку расходы греющего пара могут быть рассчитаны лишь после определения расхода нагреваемого пара, расходы греющего пара определяются итерационно, до совпадения температуры neperj ева, рассчитанной по расходам пара, с заданной температурой перегрева. В зависимости от схемы промперегрева (от одноступенчатой при однократном перегреве до двухступенчатой при двукратном перегреве) время расчета одного варианта возрастает в 2 -f- 10 раз, так как требуется выполнять итерационный расчет по нескольким величинам. При итерациях для сокращения времени счета ведутся только балансовые расчеты теплообменников и агрегатов, без подробных конструктивных расчетов. После определения расходов греющего пара па промперегрев производится полный расчет тепловой схемы с определением мощности электрогенератора, мощности механизмов собственных нужд, конструктивных характеристик и стоимости оборудования.  [c.83]


Математические модели исследуемых ПГУ представлены в виде системы программ для ЭЦВМ БЭСМ-4. Эта система состоит из двух частей программы расчета тепловой схемы установки и программы определения суммарных расчетных затрат по установке. Алгоритм удовлетворения ограничений на технологические характеристики включен во вторую часть, а на независимые и зависимые параметры — в первую часть. Алгоритм оптимизации параметров ПГУ, основанный на применении градиентного метода, реализован в виде отдельной программы, не содержащей никаких вычислений, кроме подсчета величины шага. Эта программа в значительной степени универсальна и может быть использована для оптимизации большого класса теплоэнергетических установок [75, 88].  [c.135]

В такой схеме пароперегревателя тепловоспри ятие радиационной ступени достаточно велико. Вместе с радиационным тепловосприятием ширм оно может составлять примерно половину от общего количества тепла, сообщаемого пару в перегревателе. В этом случае, действительно, могут быть обеспечены более благоприятная стабильная характеристика пароперегревателя и общая рациональная тепловая схема котельного агрегата.  [c.122]

Завод Экономайзер выпускает турбонасосы типа РВПТ-90-30 производительностью 30 т/час с напором 140 ат. Насос приводится во вращение турбиной с противодавлением 1,2 ата, выхлопной пар которой может быть использован в тепловой схеме электростанции. Насосы с подобной характеристикой и с турбоприводом при условии  [c.109]

Большое влияние на тепловую схему парогенератора оказывают характеристики топлива и параметры пара. Определяющим факто-ром является распределение тепла продуктов сгорания на передаваемое радиацией и конвекцией, зависящее от температуры продуктов сгорания на выходе из топки (см. 14-1). По принятой температуре на выходе из топки доля тепла, передаваемая конвекцией, тем больше, чем выше водяной эквивалент продуктов сгорания. Так называют теплоемкость продуктов сгорания, приходящуюся на 1 кг паро-производительности. Водяной эквивалент тем выше, чем влажнее топливо и чем выше избыток воздуха в газоходах.  [c.211]

При работе в режиме с полностью открытыми клапанами максимальная электрическая мощность турбины достигла 536 МВт, а удельный расход теплоты составил 10480 кДж/(кВт-ч). Опытный удельный расход теплоты, средний по трем гарантийным режимам, на 2,6% ниже расчетного значения. Характеристики вспомогательного оборудования, используемого в тепловой схеме турбоустановки (турбопитательный насос, горизонтальные ПВД, ПНД), соответствуют расчетным характеристикам.  [c.103]


Смотреть страницы где упоминается термин Характеристика тепловой схемы : [c.104]    [c.121]    [c.335]    [c.94]    [c.78]    [c.159]    [c.25]   
Смотреть главы в:

Котельные установки промышленных предприятий  -> Характеристика тепловой схемы



ПОИСК



Примеры расчета тепловой схемы простой Влияние начальной температуры газа на характеристики газотурбинных установок

Схемы Характеристики



© 2025 Mash-xxl.info Реклама на сайте