Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серебро Коррозионная стойкость

К этим металлам относятся золото, серебро, металлы платиновой группы, а также их сплавы. Свое название они получили из-за высокой коррозионной стойкости — практически они совершенно не склонны к коррозии в обычной атмосфере, воде и многих других средах. Все эти металлы (кроме золота и серебра) имеют высокую температуру плавления, высокую плотность, не имеют аллотропических превращений (кроме родия), очень пластичны (кроме родия и осмия). Все эти металлы отличаются высокой стоимостью.  [c.630]


Благородные металлы, в первую очередь золото и серебро, применяют в ювелирном и зубоврачебном деле. Чистое золото из-за его мягкости не применяют. Легирование золота серебром мало целесообразно, так как твердость повышается незначительно (твердость сплавов Ли—Ag не выше НВ 30). Легирование золота медью повышает твердость (при 20% Си твердость сплава становится выше НВ 100). Коррозионная стойкость при легировании медью снижается. Практически применение имеют тройные сплавы Ли—Си .  [c.630]

Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примеси в свинце (Си, 5п, Аз, Ре, В1 и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии па поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозии свинца.  [c.261]

Серебро растворимо в азотной и концентрированной серной кислотах, царской водке, цианистых солях. Оно обладает исключительной коррозионной стойкостью в уксусной кислоте и других органических кислотах всех концентраций (присутствие кислорода значительно снижает стойкость серебра), а также во многих органических соединениях.  [c.275]

В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]

Нейзильбер, внешне напоминающий серебро (чем и объясняется его название), имеет очень высокие (табл. 4.3) механические характеристики, пластичен, но удельное электрическое сопротивление его меньше, чем у других сплавов. Он имеет высокую коррозионную стойкость и благодаря значительному содержанию цинка в своем составе — меньшую стоимость по сравнению с константа-ном.  [c.128]


Медь, серебро и золото отличаются высокой коррозионной стойкостью. Стандартный электродный потенциал их по отношению к водороду положительный, особенно золота, которое имеет наивысший потенциал из  [c.28]

Серебро — один из благородных металлов и имеет, в основном, высокую коррозионную стойкость. Однако его применению в качестве покрытия препятствует сильная подверженность потуск-  [c.120]

Коррозионная стойкость металлов в атмосфере, равно как и в других коррозионных средах, нередко определяется их термодинамической стабильностью [17]. К металлам высокой термодинамической стабильности, которые не корродируют в большинстве природных сред, относятся металлы платиновой группы (рутений, осмий, родий, иридий, палладий, платина), золото и до некоторой степени — серебро. Большинство этих металлов используют главным образом в ювелирной промышленности или в качестве покрытий специального назначения.  [c.89]

Покрытия на основе серебра могут служить промежуточным слоем в системе Ni—Аё- сил —Сг с повышенной коррозионной стойкостью [135]. Из цианидного электролита при 40°С за 2 мин при i k=200 А/м осаждается слой серебро—силикат (диатомит) толщиной  [c.195]

Тетроксид азота и смесь оксидов, образующихся при его термической диссоциации, являются сильными окислителями. При обычных температурах высокой коррозионной стойкостью по отношению к оксидам азота обладают нержавеющие стали, алюминий и многие сплавы на его основе. Нестойкими к ним являются цветные металлы — серебро, медь, цинк, кадмий малостойкими— углеродистая сталь, никель.  [c.273]

Медь (табл. 1 и 2) обладает наивысшей после серебра электропроводностью и теплопроводностью. В технике принято оценивать эти свойства меди баллом 100%, а все другие промышленные металлы и сплавы сравнивать с медью. Она обладает высокой коррозионной стойкостью в атмосферных условиях, в пресной  [c.193]

Серебро устойчиво в воде лишь до температуры 130° С. Сплавы серебра, например сплав с концентрацией 40—60% серебра, 30% кадмия, 10—30% палладия или 30% серебра, 50% кадмия, 20% золота (вместо золота можно брать 10% цинка) имеют высокую коррозионную стойкость в воде при температуре до 260° С. Сплав серебра с кадмием (88% серебра и 12% кадмия) не стоек в воде, насыщенной кислородом, при температуре 260° С. Сплав же с концентрацией 80% серебра и 20% кадмия устойчив при той же температуре в воде, насыщенной кислородом. Сплавы серебра с кадмием с концентрацией 20, 25 и 30% серебра совершенно не устойчивы в воде, насыщенной кислородом, при температуре 316° С и более стойки при этих условиях в деаэрированной воде [111,252]. При контакте с аустенитной нержавеющей сталью стойкость сплава с концентрацией 75% серебра, 25% кадмия, 0,002% никеля и 0,0001% золота при температуре 260° С ухудшается. В контакте  [c.231]

Для улучшения уплотнения и повышения коррозионной стойкости кольца покрывают пленкой фторопласта-4 (для температур не более 280° С) или серебром (для более высоких температур).  [c.277]

Для повышения герметичности и коррозионной стойкости внешняя поверхность кольца покрывается фторопластом, серебром, индием и другими мягкими металлами, определяющими допустимую температуру. Кольца, предназначенные для работы лишь при низких температурах, изготовляют из нержавеющей стали и покрывают фторопластом или серебром. Кольца, предназначенные для работы как при низких, так и при высоких температурах, изготовляют из инконеля или из тугоплавких металлов и покрывают серебром, золотом или платиной. В атомных установках  [c.539]

Для снижения шероховатости и увеличения коррозионной стойкости поверхности подвергают чистовой обработке резанием. Однако такая обработка достаточно трудоемка, может привести к искажению геометрической формы при этой обработке диспергируется серебро, исходная шероховатость высокая, обработка деталей с отверстиями малого диаметра (15—20 мм) и большой длины (70—100 мм) затруднительна.  [c.292]

Однако, серебряно-марганцовистые припои обладают низкой коррозионной стойкостью в условиях тропиков и солевого тумана.  [c.72]


Припои с содержанием 10—40 % Zn применяют для пайки алюминия с применением ультразвука или абразивным методом. Введение серебра в оловянно-цинковые припои измельчает зерно и повышает коррозионную стойкость.  [c.87]

Из ДКМ на основе серебра производят электрические контакты для низковольтной аппаратуры, обладающие высокими электро- и теплопроводностью, электроэрозионной и коррозионной стойкостью, малой склонностью к свариванию и низким контактным сопротивлением.  [c.123]

Значительные количества золота потребляет стоматология корон-жи и зубные протезы изготовляют из сплавов золота е серебром, медью, никелем, платиной, цинком. Такие сплавы сочетают коррозионную стойкость с высокими механическими свойствами.  [c.27]

Аноды отливают из свинца с добавкой 1 % серебра, повышающего их коррозионную стойкость. Поверхность анодов может быть рифленой или гладкой Прокатанные аноды толщиной 5 мм в два-три раза жестче, чем литые толщиной 8 мм, а срок службы их в два раза больше (до 4 лет). Анодную штангу из освинцованной медной шины приваривают к аноду водородной сваркой.  [c.289]

Алюминий — металл серебристо-белого цвета, втрое легче меди. На воздухе покрывается тонкой прочной пленкой окиси. Пленка надежно защищает алюминий от дальнейшего окисления и придает ему коррозионную стойкость. Алюминий легко растворяется в серной и соляной кислотах и щелочах. Алюминий уступает по электропроводящим свойствам лишь серебру и меди, а по стоимости значительно их дешевле, что обуславливает исключительно широкое применение алюминия в электротехнике в качестве неизолированных и изолированных проводов, жил и оболочек кабелей, шин и т.д. Основные физические свойства алюминия приведены в табл. 1.12.  [c.23]

Серебро и палладий имеют меньший порядковый номер, но одинаковое строение внешних оболочек, а поэтому показывают меньшую коррозионную стойкость, чем золото и платина.  [c.493]

Медь, и особенно медные сплавы, широко применяют в различных отраслях пищевой промышленности. Сплавы обладают высокой коррозионной стойкостью в различных средах пищевых производств и после серебра имеют наивысшие теплопроводность и электрическую проводимость.  [c.529]

Чистая медь обладает высокой электрической проводимостью (на втором месте после серебра), пластичностью, коррозионной стойкостью в пресной и морской воде, а также в ряде химических сред. Медь принято считать эталоном электрической проводимости и теплопроводности по отношению к другим металлам. Характеристики этих свойств меди оцениваются 100 %, в то время как у алюминия, магния и железа они составляют соответственно 60, 40 и 17 % от свойств меди. Медь обладает отличной обрабатываемостью давлением в холодном и горячем состоянии, хорошими литейными свойствами и удовлетворительной обрабатываемостью резанием.  [c.722]

Коррозионная стойкость металлов, которые принято называть благородными (золото, серебро, илатипа, палладий, иридий II др.) определяется в основном их тер.модинамической устойчивостью во многих весьма агрессивных средах и в меньшей степени другими факторами—пассивностью, большим перснанряжепием водорода и др.  [c.274]

Помимо В111СОКОН коррозионно ) стойкости, к числу положительных свойств серебра следует отнести его высокую пластичность, исключительно высокую теплопроводность, высокую отражательную способность при сравнительно благоприятных механических и технологических показателях. По физическим свойствам серебро близко к меди, а ио механической ирочиости оно уступает никелю и нержавеющей стали.  [c.275]

Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1).  [c.292]

Высокая коррозионная стойкость в концентрированных кисло1ах и иеокис ляемость при нагревании на воздухе позволяют применять благородные металлы в самых жестких условиях работы. Наиболее коррозионностойкими в кислотах являются иридий, рутении, платина и золото. Палладий и серебро дозольнс легко реагируют с кислотами. В табл. 12 приведены сравнительные данные по коррозионной стойкости благородных металлов. При нагревании на воздухе платина, золото и серебро практически не окисляются. Сравнительно легко окис ляются осмий, рутений и иридий (табл. 13). Эти металлы образуют стойкие окислы, обладающие высокой упругостью паров, поэтому при высоких температурах наблюдается их испарение.  [c.404]

Золотр—серебро. Диаграмма состояния Аи—Ag представляет собой непрерывный ряд твердых растворов (фиг. 40). Все сплавы системы Аи—Ag чрез-вычайно легко обрабатываются. Коррозионная стойкость силавов постепенно падает с увеличением содержания серебра. Двойные сплавы Аи с Ag применяются редко по причине их малой прочности. В качестве упрочнителей обычно применяется медь.  [c.422]

С практичес.ки полной коррозионной стойкостью в широком диапазоне pH растворов электролитов, г. е. не корродирующие в кислых, нейтральных и щелочных средах платина, золото и частично серебро.  [c.13]

При использовании порошков палладия, серебра, меди, кремния и вольфрама (d = 0,3—2 мкм) получены легко пассивирующиеся осадки никеля [22]. Повышение коррозионной стойкости никеля в этом случае объясняется известной теорией анодной пассивности. На рис. 47 изображены потенциостатические кривые для различных никелевых покрытий, полученных при 1 к=0,5 кА/м в течение 25 мин на платиновой поверхности из электролита с pH 3—3,4 и концентрацией порошка палладия  [c.140]


Способность к пассивации делает алюминий весьма стойким во многих нейтральных и слабокислых растворах, в окислительных средах и кислотах. Хлориды и другие галогены способны разрушать защитную пленку, поэтому в горячих растворах хлоридов, в щелевых зазорах алюминий и его сплавы могут подвергаться местной язвенной и щелевой коррозии, а также коррозионному растрескиванию. Коррозионная стойкость алюминия понижается в контакте с медью, железом, никелем, серебром, платиной. Столь же неблагоприятное влияние оказывают и катодные добавки в сплавах алюминия. Для алюминия характерно высокое перенапряжение водорода, которое наряду с анодным торможением (окисная пленка) обеспечивает высокую коррозпонную стойкость. Примеси тяжелых металлов (железо, медь) понижают химическую стойкость не только из-за нарушения сплошности защитных пленок, но и вследствие облегчения катодного процесса.  [c.73]

В группе драгоценных металлов, к которым отноеят платину, палладий, золото и серебро, наибольшей коррозионной стойкостью обладает платина.  [c.163]

Припои. Из благородных металлов для припоев применяют в основном серебро (табл. 3). Серебряные припои имеют температуру плавления 600—900° С. Как правило, они отличаются большой электропроводностью, высокой механической прочностью, пластичностью, коррозионной стойкостью и вакуумплотностью.  [c.278]

А1, с высоким модулем нормальной упругости (на 8 % выше, чем у алюминия) и стойком до температуры 204 "С. В сплавах Мд— 1, где Ь] улучшает обрабатываемость и уменьшает плотность Мд. Сплавы Мд—Ы обрабатываются давлением при 232 °С и способны к деформированию на холоде до 50 % обжатия. Но эти сплавы имеют недостаточную коррозионную стойкость в сплавах со свинцом. Добавка 0,05 % Ь1 улучшает его литейные свойства, повышает твердость, вязкость, прочность без снижения пластичности. Известны РЬ —1-1 — адтифрикционные сплавы, сплавы для оболочек кабелей и сеток аккумуляторных батарей. В сплавах с серебром — припоях. Серебряные припои с литием более жидкотекучи и обладают высокой смачиваемостью.. Литий является флюсую щнм элементом в самофлюсующихся серебряных сплавах.  [c.348]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

Припои на основе олова, содержащие серебро, сурьму, медь (ВПрб, ВПр9), обладают высокой коррозионной стойкостью и применяются для пайки медных и латунных электропроводов (электрооборудования), работающих во всех климатических условиях без за-  [c.87]

Данные, приведенные в табл. 78 и 7Й, подтверждают, что особенно склонны к развитию контактной (щелевой) коррозии соединения алюминия и его сплавов, паяные оловом, свинцом и их сплавами, ферритные стали и чугун, паянные серебром, серебрянными припоями, свинцом, соединения меди, паянные свинцовыми припоями ПСр2,5 и ПСрЗ, имеющими слабое химическое сродство с паяемым металлом и неблагоприятное соотношение электрохимических потенциалов в условиях коррозионных испытаний. Данные по коррозионной стойкости паяных соединений в основном подтверждают такой вывод  [c.207]

Сплавы на основе системы Си - Ni - Zn называются нейзильберами (МНЦ15-20, МНЦС 16-29-1,8). Легирование цинком приводит к повышению механических свойств и удешевлению медно-никелевых сплавов, а также делает их внешне похожими на серебро. Свинец вводится в нейзильберы для улучшения обрабатываемости резанием. Нейзильберы характеризуются высокой коррозионной стойкостью. Они применяются в приборостроении, в медицине, в быту.  [c.205]

Для менее точных гирь ре 1 омендуются бронза и латунь с покрытиями платиной или родием поверх подслоя из серебра или оловоникелевого сплава (65% Зп, 35% N1). При этом толщина покрытия должна быть не менее 15 мкм. Бронзовые и латунные гири с покрытием хромом по никелю показали хорошую стабильность, но их нельзя применять в качестве точных из-за магнитности никеля. Отказ от никелевой подслойки и увеличение толщины хромового покрытия не приводят к желаемым результатам, так как с увеличением толщины хромового покрытия уменьшается коррозионная стойкость гири.  [c.41]

Сплавы на основе золота и серебра для медицины и ювелирных производств должны удовлетворять медико-биологическим, эстетическим, технологическим и эксплуатационным требованиям. К последним относят коррозионную стойкость (инертность к внешней среде), твердость и износостойкость, а также прочностные свойства, определяющие стабильность формы и размеров изделий из благородных металлов.  [c.881]


Смотреть страницы где упоминается термин Серебро Коррозионная стойкость : [c.78]    [c.400]    [c.424]    [c.195]    [c.274]    [c.70]    [c.351]    [c.93]    [c.162]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.281 , c.282 ]

Коррозионная стойкость материалов (1975) -- [ c.0 ]



ПОИСК



Серебро

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте