Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химический состав никеля и никелевых сплавов

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]


Медно-никелевые сплавы — сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению их подразделяют на 2 группы — конструкционные и электротехнические. Химический состав и назначение медно-никелевых сплавов приведены в табл. 24.  [c.88]

Химический состав и механические свойства никеля и некоторых никелевых сплавов  [c.342]

В табл. М-З, составленной по данным различных фирм и Бюро стандартов США, приведены составы и основные свойства различных никелевых сплавов [Л. 3 и 23]. Никель А представляет собой технический ковкий никель универсального применения. Химический его состав точно определен в соответствующих стандартах [Л. 35]. Для электровакуумной промышленности никель. А изготовляется по более жестким допускам на примеси, приведенным в табл. 11-3. Производятся также специальные сорта никеля для катодов, анодов и сеток электронных ламп. Никель А применяется в основном в виде проволоки для выводов миниатюрных ламп и других крепежных деталей. Вое эти сорта никеля изготовляются путем плавки в качестве исходного материала используется электролитический никель, к которому добавляются раскисляющие и связывающие серу элементы, не только придающие ему необходимые механические свойства и способность хорошо обрабатываться, но и определяющие собой поведение электровакуумного прибора. Никель А легко протягивается и обрабатывается механически, хорошо поддается точечной электросварке и легко паяется в атмосфере водорода серебряными припоями. Сопротивляемость коррозии этого сорта никеля велика. При высоких температурах он слабо окисляется, образуя)  [c.220]

Химический состав наиболее известных отечественных и американских пружинных сплавов с высоким содержанием никеля или на никелевой основе [5] [2]  [c.787]

Химический состав никеля, скорости и типы коррозии, а также изменения механических свойств, вызванные коррозией, приведены в табл. 102—104 те же данные для Ni—Си-сплавоа — в табл. 105—107 для никелевых сплавов — в табл. 108—ПО. Данные о стойкости коррозии под напряжением — в табл. 111.  [c.279]

Вредные примеси (сера и фосфор) и растворенные газы (азот и кислород) повышают порог хладноломкости. Однако наибольшее влияние на ударную вязкость стали при минусовых температурах оказывает химический состав. Хорошо сохраняют ударную вязкость в области низких температур стали, легированные 5—6 % никеля. Аустенит-ные хромоникелевые стали и сплавы на никелевой осново весьма пластичны в области очень низких температур. Поэтому ГОСТ 5632—72 допускает, например, поковки из сталей 04Х18Н10 и 08Х18Н12Б к применению в сосудах, работающих под давлением до температуры —269 °С.  [c.207]


Основные жаростойкие сплавы созданы на основе железа и никеля. Химический состав высоколегированных сталей и сплавов на железной, железоннкелевой и никелевой основах, предназначенных для работы в коррозионно-активных средах и при высоких температурах, приведен в ГОСТ 5632—72. Согласно этому стандарту жаростойкие (окалиностойкие) сплавы относятся к группе II и характеризуются как стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовы средах при температуре выше 550 °С, работающие в иенагруженном или слабонагружениом состоянии. Жаропрочные стали и сплавы, отнесенные к группе III, также должны обладать достаточной жаростойкостью.  [c.408]

В химической промышленности находят применение медноникелевые сплавы, содержащие 10, 30 и 63—70% Ni, а также другие металлы, в частности Fe и Мп. При скорости движения морской воды 0,30 м/с и менее коррозия таких сплавов имеет в основном равномерный характер со слабой тенденцией к пит-тингообразованию. Наименее подвержены коррозии сплавы Си (90), Ni (10) и Си (70), Ni (30). При больших скоростях движения морской воды стойкость медно-никелевых сплавов несколько повышается вследствие снижения коррозионного действия различного рода загрязнений воды и отложений на поверхности металла. В частности, при скоростях 1,5—4 м/с, соответствующих движению морской воды в насосах и теплообменниках, сплавы Си (70), Ni (30) и Си (90), Ni (10) подвержены лишь незначительной коррозии в зонах с турбулентным режимом движения. Противокоррозионные свойства этих сплавов могут быть улучшены введением в их состав 1—3% Fe. Однако присутствие в сплаве Си (70) и N1(30) более 1% Fe увеличивает вероятность питтингообразования. Достаточно эффективно введение в состав сплава Си (70), N1 (30) добавок алюминия. Склонность к коррозии в зонах турбулентности в большей степени присуща никельсодержащим сплавам, чем чистому никелю. При очень высоких скоростях движения среды (от 4 до 40—50 м/с) скорость коррозии медно-никелевых сплавов выше, чем при более умеренных скоростях.  [c.31]

Химическое палладирование применяют для повышения термостойкости, износостойкости и электропроводности поверхностного слоя деталей, а в ряде случаев с целью замены золотых и других драгоценных металлов в радиоэлектронике и некоторых других отраслях промышленности. Химический способ палладирования целесообразно, в первую очередь, использовать для покрытия деталей сложного профиля. Перед покрытием детали (стальные, никелевые, серебряные) обезжиривают, травят и декапируют принятыми для этих материалов методами. Медь и ее сплавы необходимо перед палладированием покрыть серебром или никелем (химическим или электрохимическим способом). Затем детали загружают в раствор для химического палладирования. Состав одного из таких растворов следующий (г/л) хлористый палладий — 4, трилон Б — 12, гидразин гидрат — 2, аммиак 300— 350 мл/л. Для приготовления ванны необходимое количество хлористого палладия растворяют (при нагревании) в 25%-м растворе аммиака, взятом в половинном объеме, указанном в рецептуре, потом добавляют трилон Б и остальное количество аммиака. Полученный раствор фильтруют. Перед загрузкой деталей, в ванну добавляют 5%-й раствор гидразина гидрата, являющегося в этом процессе восстановителем. Через каждые 30 мин работы раствора в него добавляют половину указанного в рецептуре количества гидразин гидрата, / = 50—55° С, соотношение между объемом раствора и площадью покрываемой поверхности (плотность загрузки) 3 1. Скорость ос аждения покрытия 1—2 мкм/ч. Для ускорения процесса детали встряхивают. Толщину покрытия определяют весовым методом с помощью образца — свидетеля . Раствор для палладирования можно регенерировать по специальной методике. Так как растворы для химического палладирования не отличаются устойчивостью, необходимо тщательно предохранять их от всякого рода загрязнений.  [c.185]

Татига [6] анализировал химические факторы, влияющие на сопротивление выдавливанию у сплавов на никелевой основе. Из элементов, входящих в состав сплавов, наиболее мощное упрочняющее влияние оказывал ниобий, слабее — вольфрам и еще слабее — молибден. Упрочняющее влияние хрома было незначительным, а из остальных элементов большинство разупрочняли сплав. Поведение всех элементов коррелировало с константами диффузии в никеле при 1150 °С, и на этом основании сделан теоретический прогноз в отношении тантала, как самого мощного из возможных упрочните-лей. Результатом исследований явилось регрессионное уравнение, позволяющее прогнозировать усилие выдавливания для сплавов с новым химическим составом.  [c.211]


Современные никелевые и кобальтовые жаропрочные сплавы— сложные по составу композиции, отвечающие высоким требованиям к физическим, механическим и химическим свойствам. В связи с этим эвтектические сплавы также являются сложными. Таким образом, хотя моновариантные эвтектики позволяют изменять состав и объемное содержание упрочняющей фазы вдоль эвтектического желоба, иногда требуется еще большая степень свободы в изменении состава. В частности, направленные двухфазные структуры получают в сплавах, которые по составу термодинамически мпоговариаптны, а не инвариантны или монова-риантны, как в двойных или тройных системах, описанных ранее, В качестве примера применен этот подход к богатой никелем четырехкомпонентной системе (рис. 9) из-за удобства и простоты графического изображения, хотя аналогичный анализ может быть проведен для более сложных систем. Для четырехкомпонентной системы реакция, обеспечивающая образование желаемой анизотропной двухфазной структуры, служит реакцией одновременного выделения двух твердых фаз из жидкости. На рис, 9 показана политермическая проекция четырехкомпонентной системы Ni— А1—Nb—Ср. Грани тетраэдра представляют политермические проекции тройных систем Ni—А1—Nb, Ni— r—Nb и Ni—Gr—Al. Рост двойной эвтектики Ni—NijNb и рост моновариантных эвтек.  [c.124]

По сравнению с покрытиями из чис1ых металлов покрытия из сплавов имеют часто ценные преимущества. Электроосажденные сплавы обладают повышенной твердостью и коррозионной стойкостью они имеют меньшую пористость и более приятный внешний вид по сравнению с покрытиями из отдельных металлов, входящих в состав сплавов. Так, присутствие незначительного количества никеля в золотых покрытиях существенно повышает их твердость цинккадмиевые сплавы часто лучше защищают от коррозии, чем цинк или кадмий в отдельности в слоях такой же толщины свинцовооловянные покрытия менее пористы, чем свинцовые и оловянные покрытия никелькобальтовые сплавы имеют повышенную химическую стойкость, повышенную твердость и более приятный внешний вид, чем никелевые и кобальтовые покрытия, и т. д.  [c.113]


Смотреть страницы где упоминается термин Химический состав никеля и никелевых сплавов : [c.186]    [c.65]    [c.79]    [c.234]    [c.541]   
Смотреть главы в:

Металлургия и материаловедение  -> Химический состав никеля и никелевых сплавов



ПОИСК



Никелевые сплавы

Никелевые сплавы химический состав

Никелевые сплавы-см. Сплавы никелевые

Никель

Никель Химический состав

Никель и никелевые сплавы

Никель и сплавы никеля

Сплавы Состав

Сплавы Химический состав

Сплавы никеля

Химический никелевые — Диаграмма состояния сплавов системы никель—хром 79 Применение 79—82 — Свойства 79—82 — Химический состав

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте