Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные характеристики термической усталости

Глава 7 посвящена обсуждению основных характеристик термической усталости и возможности повышения надежности изделий при циклическом изменении температуры.  [c.8]

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ТЕРМИЧЕСКОЙ УСТАЛОСТИ  [c.250]

В случаях, когда детали подвергаются действию длительных термоциклов (десятки минут и более), предельное состояние материала в основном определяется характеристиками длительной прочности [60]. При этом кривые термической усталости, пред-  [c.168]


Общая характеристика повреждений. Трещины в зоне отверстий встречаются наиболее часто. По внешнему виду пораженной дефектами зоны можно выделить два основных типа повреждений. Повреждения первого типа (рис. 5, а) наблюдались в зоне отверстий для вводов линий рециркуляции от экономайзера барабанов котлов давлением 100 кгс/см . Этот вид повреждений характерен для термической усталости металла, обусловленной многократными колебаниями температуры при попадании холодной воды на нагретую стенку барабана вследствие недостатков в конструкции узла подвода воды, а также температурных пульсаций среды в барабане при его работе.  [c.11]

Основные элементы в теплоэнергетических установках изготовляют из высокопластичных жаропрочных и теплоустойчивых сталей сравнительно простого химического состава и относительно невысокой прочности. Это позволяет при сохранении требуемых для рабочих температур характеристик жаропрочности обеспечить необходимую при производстве толстостенных изделий больших размеров технологичность сталей. Очевидно, что с точки зрения сопротивления разрушению при термической усталости начальное поверхностное повреждение в толстостенной детали из высокопластичного материала не переходит немедленно в сквозную трещину. В этом случае большее значение имеет кинетика роста трещины вглубь, поэтому для ряда элементов возникает вопрос о возможности эксплуатации теплоэнергетических установок с дефектами определенного допустимого размера.  [c.21]

Принимая во внимание, что в большинстве известных подобных испытаний различные исследователи в основном придерживались общих положений, то можно получить достаточно общую и стабильную основу не только для определения характеристик сопротивления материалов термической усталости, но также и для сопоставления результатов различных испытаний. Однако необходимо учитывать, что в разных исследованиях выбирали различные фиксированные и варьируемые параметры термодеформационного цикла.  [c.67]

Приведенный далеко не полный перечень факторов, неоднозначно влияющих на долговечность материалов и существенно усложняющих их сравнение по термической усталости, свидетельствует о том, что при оценке влияния химического состава на долговечность теплоустойчивых и жаропрочных материалов необходимо одновременно учитывать их теплофизические свойства, характеристики прочности и пластичности, а также основные  [c.140]

Если классифицировать указанным образом явления, характеризующие высокотемпературную прочность, до можно отметить, что самыми существенными являются не зависящие от времени прочностные свойства при высокотемпературном растяжении,. мало- и многоцикловой усталости- Кроме того, существенным является ползучесть при постоянном напряжении, зависящая от времени, и ползучесть при циклическом изменении напряжения, проявляющая дополнительно специфический эффект циклического изменения температуры. Таким образом, характеристики деформации при высокотемпературном растяжении и термическом скачке деформации, а также характеристики разрушения при высокотемпературной и термической усталости, определяемые при условиях сочетания или наложения влияния напряжения и деформации, времени и температуры, не обязательно выражаются основными свойствами. Они во многих случаях про являют специфические характеристики деформации и сопротивления разрушению из-за взаимного влияния. Вероятно, в некоторых случаях имеются отклонения характеристик прочности от указанного на схеме положения (характеризуемые, например, линейным законом накопления повреждений).  [c.18]


Помимо рассмотренных и ряда не нашедших освещения в данной главе приборов, аппаратов, установок и методов, применяемых при изучении различных видов эрозионного разрушения, существует еще множество косвенных методов, использующих оригинальную аппаратуру для установления характеристик металлов и среды в процессе эрозии. Сюда относятся установки и методы испытания на термическую усталость очень широкий класс приборов и установок для определения прочностных характеристик металлов и сплавов при высоких и сверхвысоких температурах разнообразная аппаратура для определения теплофизических констант металлов, особенно при высоких температурах методы определения прочности сцепления эрозионно-стойкого покрытия с основным металлом высокочастотная аппаратура для получения весьма высоких температур аппаратура для изучения свойств материалов в вакууме и при сверхвысоких давлениях различные установки для изучения гидродинамических, газодинамических и электродинамических процессов и многое, многое другое.  [c.130]

Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]

Пределы ползучести и длительной прочности и запас пластичности являются основными, но не единственными характеристиками жаропрочных сталей. Кроме повышенных значений пределов ползучести и длительной прочности жаропрочные котельные стали должны иметь высокое сопротивление усталости (в том числе термической), эрозии, малую чувствительность к надрезам.  [c.189]

При отборе в приведенной последовательности устанавливают возможность применения способа для конструктивно-технологической группы с определенными размерными характеристиками возможность применения покрытия для материала основной детали и сочетаемость наносимого покрытия с материалом сопрягаемой детали возможность обеспечения заданной толщины покрытия для компенсации износа и необходимого припуска на последующую обработку необходимость и возможность предварительной обработки вид механической и финишной обработки и достигаемую точность и шероховатость достигаемую твердость поверхности после нанесения покрытия, необходимость термической обработки и ее вид достигаемую износостойкость при работе с сопрягаемой деталью сплошность покрытия прочность сцепления снижение сопротивления усталости стабильность получения заданных показателей.  [c.76]

Рассматриваются твердость, прочность, предел упругости, текучести, усталости, вязкость, жаропрочность, износостойкость, теплопроводность и другие характеристики практически всех основных инструментальных сталей, применяемых в мировой практике. Кроме того, приведен их химический состав, маркировка, даны технологические свойства, термообработка, диаграммы превращений и т. д. Данные приводятся fi виде диаграмм и таблиц. Представлены рекомендации по рациональному выбору стали для различных инструментов я ее термической обработки с учетом условий службы.  [c.2]


Для многих случаев в обеспечении работоспособности изделий очень важно также сопротивление термической и высокотемпературной усталости. Кроме того, на характеристики жаропрочности большое влияние может оказывать внешняя среда, вызывающая коррозионное или эрозионное воздействие. Основные методы испытаний с учетом такого влияния среды рассмотрены в разделе 20.3.  [c.351]

Химико-термическая обработка. При химико-термической обработке происходит изменение химического состава поверхностного слоя изделий в результате диффузии в сталь различных элементов из внешней среды. После насыщения в большинстве случаев выполняют закалку и низкий отпуск. Основной целью этой обработки является повышение твердости и износостойкости поверхности, а также повышение сопротивления усталости и предела выносливости при контактной нагрузке. Характеристики процессов химико-термической обработки, применяемых для колес, приведены в табл. 20.5.  [c.432]

Процесс упрочнения является финишной операцией, поэтому выполняется после механической и термической обработки детали. Вид (характер) упрочнения каждой конкретной детали выбирается, исходя из ее конструктивно-технологических и эксплуатационных характеристик с учетом технологических и технико-экономических показателей процесса, назначаемого из числа существующих или специально разработанных для широкофюзеляжных самолетов. При этом в качестве одного из основных условий требуется обеспечить высококачественное упрочнение большого количества силовых деталей при минимальном количестве применяемых способов упрочнения и типоразмеров оборудования. Эффективность выбранных режимов упрочнения предварительно оценивается по результатам испытаний стандартных образцов на малоцикловую усталость при растяжении асимметричным циклом нагружения, а также (при необходимости) по результатам испытаний образцов на сопротивление износу, коррозии под напряжением и других испытаний, В дальнейшем эффективность упрочнения окончательно оценивается по результатам испытания агрегатов на ресурс н надежность.  [c.229]

Практика эксплуатации сварных нетермообрабатываемых конструкций в условиях циклического нагружения показывает, что в большинстве случаев разрушения возникают в сварном шве или области сопряжения шва с основным металлом. Это связано с комплексом факторов, снижающих работоспособность сварных соединений, основными из которых являются концентрация напряжений и деформаций в зонах сопряжения шва с основным металлом, остаточные сварочные напряжения (ООН), а также ухудшение характеристик сопротивления усталости металла шва и зоны термического влияния по отношению к основному металлу [59, 119, 144].  [c.268]

Для определения коэффициентов аир уравнения (2.34) в соответствии с методикой обработки экспериментальных данных достаточно испытать три-четыре серии образцов по общему режиму ие-изотермического малоциклового нагружения при варьировании основных параметров (например, /в), чтобы реализовать различные соотношения щ1ар Уравнение (к34), характеризующее нелинейный закон суммирования повреждений при вычислении их по соотношениям (2.30), является основой для определения разрушающего числа циклов Nf материала в опасной зоне конструктивного элемента с использованием характеристик длительной и малоцикловой прочности. В последнем случае необходимо выдержать определенное сочетание полуциклов нагрева и охлаждения. Приближенно характеристики малоцикловой прочности можно получить при испытаниях на термическую усталость, если в реальном объекте иолуцикл сжатия приходится на область высоких температур и выдержки осуществляются при 7 тах-  [c.91]

При термоциклическом нагружении существуют три области, характеризующие разрушение различного характера область усталостного разрушения, область смешанного и область статического разрушения [28]. Конкретное соотношение величин Де, Гщах, обусловливает тот или иной вид разрушения. Аналогичные данные получены и по другим сплавам. Они свидетельствуют о необходимости учета для характеристики типа разрушения всех факторов, определяющих долговечность при термической усталости. Неучет одного из них может привести к неправильным ёыводам о причинах разрушения. Необходимо отметить, что указанные факторы—амплитуда деформации, длительность и температура цикла являются основными, но не единственными, определяющими вид разрушения. Не изменяя в целом общих закономерностей, большое значение имеют технологические и эксплуатационные факторы, например, способ и режим выплавки металла, влияние среды, защитные покрытия. Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего в одних и тех же условиях нагружения смещается область значений величин Де, Тт х, in, в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или в случае склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен.  [c.176]

Таким образом, правильный выбор напряжений для металлов, предназначенных к длительной работе в услозиях высоких тегмпе-ратур, возможен только тогда, когда известны характеристики, полученные при длительных испытаниях металлов и сплавов на ползучесть и длительную прочность. Обе эти характеристики в основном зависят от температуры, величины нагрузки (напряжения) и структуры сплава. Наряду с этим от сплавов, предназначенных для работы при высоких температурах, требуются еше высокое со-яротивление термической усталости (разрушению в результате повторных нагревов и охлаждений), малая чувствительность к надрезу и высокий предел выносливости при рабочих температурах.  [c.205]


Основное влияние на стойкость стали к сульфидному растрескиванию оказывают структура и ее прочностные характеристики, изменяющиеся в широком диапазоне при термической обработке, пластической деформации и их сочетании. Очень большое значение для оценки склонности металла к статической водородной усталости имеет его твердость. Стандартом НАИК предусматривается максимальная допустимая твердость HR 22.  [c.22]

К первой группе факторов следует отнести прежде всего вид и химический состав материала, определяюш,ие собой многие другие его характеристики. Поскольку в дальнейшем в основном речь будет идти о металлах, то сюда же следует отнести термическую обработку и структуру сплава, а также зависящие от них (при данном химическом составе) характеристики механических свойств (твердость, прочность, пластичность, внбростойкость, усталость, ударную и взрывную вязкость и др.) при комнатной и особенно при высоких температурах, напряженное состояние, чистоту обработки поверхности и т. п. К этой же группе необходимо отнести тепловые константы металлов, такие как температура плавления, теплопроводность, коэффициент термического расширения, теплота плавления и парообразования, теплота испарения и др.  [c.132]


Смотреть страницы где упоминается термин Основные характеристики термической усталости : [c.131]    [c.365]    [c.280]   
Смотреть главы в:

Теория высокотемпературной прочности материалов  -> Основные характеристики термической усталости



ПОИСК



299 — Основные характеристики

299 — Основные характеристики характеристики

Термическая характеристика сма

Усталость

Усталость и термическая усталость

Усталость термическая



© 2025 Mash-xxl.info Реклама на сайте