Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели типа системы твердых тел

МОДЕЛИ ТИПА СИСТЕМЫ ТВЕРДЫХ ТЕЛ  [c.90]

Математическую модель как первой, так и второй расчетной модели следует строить на общих принципах аналитической механики твердого тела (теория гироскопа с упругими связями или системы гироскопов, соединенных упругими связями) [44, 45]. При этом необходимо исходить из того, что центр масс каждого тела и углы поворота относительно осей, связанных с центрами масс, имеют конечные значения. Упругие связи, моделирующие упругое основание или несущие конструкции сооружения, могут быть представлены расчетными моделями различного типа гибкая упругая связь, упругая односторонняя связь, упругопластическая связь, выключающаяся (разрушающаяся), упругопластическая связь с разрушением и т. д.  [c.319]


Условия типа (1) являются частным случаем рассматриваемых в механических моделях условий, ограничивающих возможное изменение координат материальных точек системы. Такие условия называются связями. Движением твердого тела называется совокупность движений (г (0, т ), г = О, 1, 2,..., материальных точек, составляющих твердое тело. При этом движение точек во все моменты времени i g Л должны удовлетворять связям  [c.81]

Для объяснения результатов эксперимента была предложена модель, использующая представления о ротационной неустойчивости пластической деформации [40, 42]. Считается, что хаотическая структура дислокаций деформируемого твердого тела испытывает ротационные перестроения, при которых часть дислокаций собирается в конечные стенки — ротационные элементы (диполи или квадруполи частичных дисклинаций) (см. рис. 4.6, г, ё). Превращение в структуре протекает лавинообразно (по типу фазового перехода [4, И]), так как взаимодействие диполей инициирует зарождение новых диполей в полях напряжений, созданных уже имеющимися диполями (см. п. 4.1). Во время нарастания плотности дисклинационных диполей 6 и уменьшения плотности хаотических дислокаций р изменяются физико-механические свойства материала, в частности, микротвердость, дисперсия упругой деформации и т. д. При дальнейшем увеличении пластической деформации р становится настолько малой, что ее не хватает для поддержания роста упорядоченной структуры. Сами диполи после остановки теряют активность (например, из-за механизмов релаксации (см. рис. 4.10), поэтому плотность 6 активных диполей падает. Вследствие малости количества очагов перестройки хаотические дислокации вновь начинают размножаться под действием внешней нагрузки, вызывая новое изменение физических параметров твердого тела. Дальнейшее увеличение р повторно вызывает лавинообразную перестройку хаотической структуры в ротационную и т. д. Таким образом, возникает колебательный режим в неравновесной двухкомпонентной термодинамической системе (см. 1).  [c.136]

Рассмотренные типы поверхностных волн в твердых телах, разумеется, далеко не исчерпывают всё многообразие встречающихся в природе ситуаций. Особенно это относится к волнам в слоистых системах. Применительно к ним описанные слои с резкими границами должны рассматриваться как простейшие модели. То же самое можно сказать и о большинстве других механизмов, приводящих к существованию поверхностных акустических волн.  [c.208]


Как уже отмечалось в томе 1, гл. 1, 6, п. к) в разделе, посвященном термодинамическому описанию критических явлений, основой всего подхода является интуитивно улавливаемая общность критических явлений (мы здесь включаем в них и Л-переходы), происходящих в системах, внешне совершенно не похожих друг на друга. С одной стороны, это неупорядоченные системы (критические явления в системах жидкость-газ, А-переход в жидком Не , фазовые переходы в моделях с пространственно размазанным спиновым моментом и т.д.), с другой — дискретные системы, моделирующие явления в твердых телах (магнетики различных типов, сплавы, модели решетчатых газов, рассматривающиеся как мостик для перехода к более реалистичным газ-жидкостным системам, и т. п.). Доверяя этой интуиции, мы рассматриваем, если это по каким-либо причинам оказывается удобным, одни вопросы с точки зрения непрерывных систем, другие — с точки зрения дискретных, полагая, что результаты такого рассмотрения относятся к тем и другим. Но эта универсальность подхода не есть символ веры, ей находятся и физические основания в области 9 вс радиус корреляции, являющийся характерной масштабной единицей длины в рассматриваемых условиях, значительно превышает по величине как среднее расстояние между частицами (в твердых телах — постоянную решетки) Л, > о = /vJn, так и радиус взаимодействия R Ro, поэтому общий характер поведения систем в этой области нечувствителен к деталям потенциалов взаимодействия частиц друг с другом Ф(г,у) или /(гу) = I i, j) (напомним, что сами значения критических параметров непосредственно определяются через это взаимодействие, как это мы видели на примере газа Ван дер Ваальса и ферромагнетика Изинга).  [c.360]

Как уже отмечалось в гл. I, 6, п. к) в разделе, посвященном термодинамическому описанию критических явлений, основой всего подхода является интуитивно улавливаемая общность критических явлений (мы здесь включаем в них и Л-переходы), происходящих в системах, внешне соверщенно не похожих друг на друга. С одной стороны, это неупорядоченные системы (критические явления в системах жидкость—газ, Л-переход в жидком Не", фазовые переходы в моделях с пространственно размазанным спиновым моментом и т. д.), с другой — дискретные системы, моделирующие явления в твердых телах (магнетики различных типов, сплавы, модели решетчатых газов, рассматривающиеся как мостик для перехода к более реалистичным газ-жидкостным системам, и т. п.). Доверяя этой интуиции, мы рассматриваем, если это по каким-либо причинам оказывается удобным, одни вопросы с точки зрения непрерывных систем, другие — с точки зрения дискретных, полагая, что результаты такого рассмотрения относятся к тем и другим. Но эта универсальность подхода не есть символ веры, ей находятся и физические основания в области 0 0с радиус корреляции, являющийся характерной масштабной единицей длины в рассматриваемых условиях, значительно превышает по величине как среднее расстояние между частицами  [c.703]

Развитием описанной расчетной модели может служить дискретно-континуальная модель, т. е. твердое тело (штамп), заглубленное в упругое полупространство, модель которого может иметь различные виды (чисто упругое, уйругопластическое, среда с односторонним видом деформаций и т. д.). Математической моделью этого случая будет система дифференциальных уравнений смешанного типа шесть обыкновенных дифференциальных нели-  [c.322]

При динамических исследованиях и исследовании виброамортизации некоторого класса реальных рамных конструкций и некоторых типов машин, установленных на общих фундаментальных рамах (например, генераторов турбин, насосов и т. д.) в области спектра низких частот в [1] разработана методика построения механических моделей, которая сводится к замене реальной конструкции динамической моделью с сосредоточенными параметрами. Такая механическая модель представляется в виде пространственной системы твердых тел, соединенных между собой упругими связями типа балочных элементов, и связанных с фундаментом с помощью амортизаторов.  [c.82]


Гидродинамическая аналогия, основанная на тождественности в формально математическом смысле между функцией тока "и потенциалом скорости идеальной жидкости в иевихревом потоке и функцией теплового потока и тем пературы в системе без источников тепла, была использована Муром и другами авторами для решения двухмерных задач стационарной теплопроводности [Л. 39]. В дальнейшем область применения этой модели была расширена на системы с распределенными источниками [Л. 43]. В 1928 г. Эмануэлем и несколько позднее Д. В. Будриным были сконструированы и построены модели, основывающиеся на аналогии математических соотношений, описывающих распределение температуры в твердом теле и распределение напоров в воде, движущейся через капиллярные трубки [Л. 49]. Установки, названные гидравлическими интеграторами, позволили решать задачи нестационарной теплопроводности и массопроводности. В. С. Лукьяновым позднее был разработан ряд ицтеграторов для решения двух- и трехмерных задач тепло- и массопроводности [Л. 50], а Будриным [Л. 51] — гидростатические интеграторы для решения нелинейных уравнений переноса параболического типа.  [c.90]

Возникающие в рамках развиваемого в книге подхода системы нелинейных уравнений порождаются посредством представления типа Лакса в двумерном пространстве элементами градуированных алгебр или супералгебр Ли. В зависимости от выбора адекватной алгебраической структуры и градуировки в ней они описывают широкий класс нелинейных явлений в самых различных областях теоретической и математической физики в физике элементарных частиц (калибровочные поля и монопольные конфигурации), в твердом теле и плазме, теории электролитов, нелинейной оптике, аэродинамике, космологических моделях, проблемах экологии (динамика сосуществования видов), в радиотехнике и т. д.  [c.5]

Материал 2, посвященный дискретным системам, также представляет определенный интерес в общей теории неидеальных систем (так как это системы с фазовым переходом). И не только потому, что он является необходимым дополнение.м к теории твердого тела или вследствие того, что в недавнее время эта тематика стала вновь популярной. Понятия дальнего и ближнего порядков являются общими для статистических систем, включая и те, которые не являются магнетиками или бинарными сплавами, для описания состояний которых эти понятия были первоначально введены. И если для упомянутых систем упорядочение имеет достаточно простую физическую интерпретацию, то для других, например жидкого гелия, сверхпроводника или двухфазной системы, оно воспринимается в основном через призму концепции подобия явлений пространственного упорядочения в дискретных системах и двухфазным состоянием в непрерывных (намагничение как фактор дальнего порядка подобно количеству сверхтекучей компоненты в Нс-И или количеству жидкой фазы в системе типа газ—жидкость и т. д.). Мы уловили эту концепцию, когда исследовали некоторые системы с помощью вариационного принципа (например, сразу было установлено, что точка Кюри для магнетика эквивалентна критической температуре в решетчатом газе, что совпадают значения всех критических показателей для этих моделей и т. д.). Конечно, точного доказательства на микроскопическом уровне эквивалентности этих внешне совсем непохожих явлений нет, она устанавливается только для моделей. Поэтому ее надо восприни.мать не как кем-то навязанную дополнительную организацию природы, а скорее как тенденцию к подобию явлений определенного класса. Обзору развития этих идей на полуфеноменологическом уровне посвящен 3 настоящей главы.  [c.715]


Смотреть страницы где упоминается термин Модели типа системы твердых тел : [c.207]    [c.207]    [c.369]   
Смотреть главы в:

Вибрации в технике Справочник Том 4  -> Модели типа системы твердых тел



ПОИСК



Модель системы

Системы твердых тел

Типы ASE-систем



© 2025 Mash-xxl.info Реклама на сайте