Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сера-олово

Сильная ковалентная связь с энергией порядка 10 Дж/моль определяет высокую температуру плавления и прочность кристаллов. Ковалентной связью обусловлены структуры так называемых атомных кристаллов — алмаза, кремния, германия, серого олова и др.  [c.9]

К ковалентным кристаллам относят твердые тела, кристаллическая структура которых образована за счет ковалентной связи. Типичными представителями кристаллов с чисто ковалентной связью являются алмаз, кремний, германий, серое олово, которые построены по типу структуры алмаза (см. рис. 1.28).  [c.75]


Серое олово при нагревании переходит в белое при Го = 292 К (и нормальном атмосферном давлении) с поглощением теплоты Х = 2242 Дж/моль. При Tбелое олово менее устойчиво, но существует наряду с серым и поэтому можно измерить зависимость С,(Т) как серого, гак и С2(7 ) белого олова вплоть до температуры перехода. При этом в результате числового интегрирования получаем  [c.97]

К простым полупроводникам относятся германий, кремний, селен, теллур, бор. углерод, фосфор, сера, сурьма, мышьяк, серое олово, иод.  [c.267]

Олово — серебристо-белый металл, обладающий ясно выраженным кристаллическим строением. При изгибе прутка олова слышен треск, вызываемый трением кристаллов друг о друга. Олово — мягкий, тягучий металл, позволяющий получать путем прокатки тонкую фольгу. Предел прочности при растяжении белого олова колеблется от 16 до 38 МПа. Кроме обыкновенного белого олова, кристаллизующегося в тетрагональной системе, существует серое порошкообразное олово (плотность 5,6 Мг/м ). При сильном морозе на белом олове появляются серые пятна (выделение серого олова), получившие название оловянной чумы. При нагреве серое олово снова переходит в белое. Если нагреть олово до температуры выше 160 °С, оно переходит в третью (ромбическую) модификацию и становится хрупким. При нормальной температуре олово на воздухе не окисляется, вода на него не влияет, а разведенные кислоты действуют очень медленно. Олово используют в качестве защитных покрытий металлов (лужение) оно входит в состав бронз и припоев. Тонкая оловянная фольга (6—8 мкм), применяемая в производстве  [c.217]

Из формулы (6.12) видно, что равновесная концентрация носителей заряда в собственном полупроводнике определяется шириной запрещенной зоны и температурой. Причем зависимость tii и Pi от этих параметров является очень резкой. Так, уменьшение Eg с 1,12 эВ (Si) до 0,08 эВ (серое олово) приводит к увеличению til и pi при комнатной температуре на 9 порядков увели-  [c.163]

Используя электролит № 3, удалось получить качественные никелевые покрытия, не содержащие примесей. Реакция начиналась с pH раствора, равного 8,1 при увеличении pH до 10,5 наблюдалось некоторое возрастание скорости осаждения, однако покрытия получались более темные, матовые. В процессе осаждения необходимо корректировать pH раствора путем добавления раствора аммиака рекомендуемая температура осаждения 70— 95° С, при этом скорость осаждения составляет —0,02 мкм/мин и мало изменяется во времени. Химическим анализом показано отсутствие в покрытии серы, олова и палладия. Спектральным анализом установлены следы железа, алюминия, меди и кальция, что связано, по-видимому, с недостаточной чистотой использованных реактивов.  [c.186]


Взять белое и серое олово. Первое довольно устойчиво, второе легко разрушается. Переход р-формы в а-форму сопровождается увеличением объема на 26 процентов. Это явление названо оловянной чумой . Переохлаждение до температуры не ниже 13° белое олово переносит безболезненно. Но вот ртутный столбик доходит до —20, —25, —30°. Начинается процесс перестройки решетки. Белое олово становится серым. Особенно интенсивно переход р-формы в а-форму идет при —38°. Незнание этого погубило экспедицию Р.- Скотта на Южный полюс в 1912 году, так как топливо, находившееся в сосудах, паянных оловом, вылилось из них.  [c.39]

Пластичное белое олово (Р) устойчиво при температурах от точки затвердевания до 13,2° С, а хрупкое серое олово (а) образуется ниже этой температуры. Так как олово склонно к переохлаждению, превращение из белого в серое олово происходит при отрицательных температурах. Скорость превращения очень мала  [c.247]

Атомный номер Атомный вес Плотность в г/см бе.7ое олово (,3) серое олово (а)  [c.251]

Усадка при затвердевании в % Кристаллическая структура серого олова о.)  [c.251]

Введением в олово небольших добавок сурьмы, свинца, мышьяка, меди, золота, никеля и, особенно, висмута резко снижают температуру и замедляют скорость превращения р- в а-олово. Достаточно добавить в олово 0,05% висмута или 0,1% сурьмы, чтобы практически полностью предотвратить его переход в а-модификацию. Наоборот, введение в олово германия, цинка, алюминия, теллура, марганца, кобальта и магния увеличивает скорость превращения. Поэтому очень строго регламентируется содержание в олове примесей алюминия и цинка. При большом наклепе или наличии растягивающих напряжений процесс перехода также ускоряется. Серое олово можно перевести в белое переплавкой.  [c.252]

Под влиянием низких температур светлое олово перерождается в серое ( заболевание оловянной чумой ) и превращается в порошок с плотностью 5,85. Хотя путем переплавки серое олово можно восстановить, но тогда теряется до 25% олова от первоначального. Олово следует хранить в отапливаемых складах с температурой не ниже 12° С и осуществлять контроль за появлением зараженного олова, так как начавшийся процесс перерождения может продолжаться и при температуре выше 0° С.  [c.93]

При температуре 18° С белое тетрагональное олово превращается в кубическое серое олово, при этом происходит столь сильное  [c.233]

Олово суш,ествует в двух модификациях обычное белое олово тетрагональной системы, устойчивое при температуре 13,2° С и выше, и серое олово кубической системы, устойчивое ниже указанной температуры. Физические свойства олова приведены в табл. 20, а механические — в табл. 21.  [c.210]

Однако электролитический способ лужения имеет и свои недостатки. К их числу относятся неустойчивость гальванических покрытий в органических кислотах малая сопротивляемость покрытий при низких температурах (например, переход в серое олово — оловянная чума ) затрудненность лужения в местах соединения отдельных деталей необходимость больших площадей производственных помещений.  [c.223]

Причина гибели экспедиции заключалась в полиморфном превращении олова, которым были запаяны канистры. При суровых антарктических морозах высокотемпературная модификация — белое олово — превращается в низкотемпературную — серое олово (обе модификации имеют достаточно сложные решетки). Удельный объем серого олова в 1,2 раза выше. Поэтому возникающие при превращении внутренние напряжения разрушают металл (для наглядности можно вспомнить, как замерзшая вода разрывает трубы), и он превращается в серый порошок. Через образовавшиеся из-за этого в канистрах отверстия и вытек керосин,  [c.133]

Возможность расшифровать кристаллические структуры белого и серого олова и разобраться в во-просе детально появилась, конечно, только после работ Лауэ и Брэгга. Но само явление превращения олова в порошок было известно давно и носило грозное имя оловянной чумы . Оно не раз наблюдалось в Сибири или при сильных заморозках в странах Европы. В средние века оловянная чума за неимением лучшей версии считалась результатом наговора ведьм.  [c.134]


При эксплуатации оловянных покрытий при температуре ниже плюс 13 °С возможно разрушение покрытия вследствие перехода компактного белого олова (р-8п) в порошкообразное серое олово (а-8п) ( оловянная чума ).  [c.901]

Кеезом и Пирлман (неопубликованные данные) провели измерения молярной теплоемкости антимонида индия в интервалах температур от 1 до 20° К, причем величина Н,, оказалась равной 200° К. Это вещество также имеет решетку типа алмаза, постоянная которой почти совпадает с постоянной решетки серого олова (6,45 и 6,46 А соответственно) кроме того, массы атомов индия, сурьмы и олова довольно близки. Если предположить, что величина о для серого олова также равна 200° К, то зависимости 9/в(, от Т/во для  [c.348]

Эти результаты, получеггные Шоттки [182], использовались Симоном [183] для объяснения отклонений теплоемкости лития, натрия, кремния, серого олова и алмаза от формулы Дебая (5.6). Однако теплоемкость этих веществ меняется с температурой монотонно, любой же монотонный ход теплоемкости, как отмечал Блекмен [39], может быть получен из соответствующего непараболического спектра решетки. Поэтому рассмотренную выше схему энергетических уровней следует использовать для объяснения поведения теплоемкости только при наличии максимумов теплоемкости. Так, нанример, для некоторых редкоземельных элементов [99] подобные максимумы связываются с переходами между 4/-уровнями, расщепленными внутрикристаллическим нолем (см. п. 20).  [c.366]

Метод растворов. Из растворов можно выращивать неустойчивые в точке плавления кристаллы. Кристалл растворяют в жидкости. В процессе охлаждения, вследствие эффекта обратной растворимости, образуется зародыш кристалла. Важным условием для роста зародыша является степень перенасыщения. Этим методом можно получить монокристаллы с высокой точкой плавления (GaAs, GaP, Si ), монокристаллы серого олова из ртутных  [c.286]

Атомный номер олова 50, атомная масса 118,69, атомный радиус 0,158 нм. Известно 20 изотопов, стабильных и радиоактивных. Электронное строение [Kr]4rf 5s 5p . Электроотрицательность 1,4. Потенциал ионизации 7,332 эВ. Кристаллическая решетка при температуре ниже 13 °С серое а-олово с кубической решеткой типа алмаза с параметром 0=0,65043 нм, выше 13 °С белое -олово с тетрагональной решеткой с параметрами а = 0,58312 нм, с=0,31814 нм, с/о=0,546. Переход - в а-олово сопровождается увеличением объема и образованием кристалликов серого цвета (оловянная чума). Скорость превращения при ОХ 0,2 мм/сут и максимальная при —33 X. Контакт с серым оловом ускоряет превращение. Чистое белое олово без соприкосновения с серым может сохранить свою структуру до температуры —272 X. При длительном вылеживании при 20 X серое олово превращается в белое повышение температуры ускоряет процесс плавление способствует мгновенному переходу серого олова в белое. Плотность белого олова 7,295, серого 5,846 т/м . /пл = 232Х, /квп=2270Х. Температурный коэффициент линейного расширения при ОХ =21-10 К . Упругие свойства олова =55 ГПа, 0=17 ГПа.  [c.56]

Ковалентная связь возникает между атомами элементов групп IVB, VB, V1B и VIIB системы Д. И. Менделеева (рис. 1.13). Все они кристаллизуются по правилу 8 — N каждый атом окружен 8 — N ближайшими соседями, где М — номер группы, к которой принадлежит элемент. Объясняется это тем, что в валентной оболочке элемента группы N имеется 8 — N орбиталей, на которые могут быть приняты электроны соседних атомов. Так, алмаз, кремний германий, серое олово являются элементами IV группы. Поэтому они имеют тетраэдрическую решетку, в которой каждый атом окружен четырьмя ближайшими соседями, как показано на рис. 1.13, а. Мышьяк, фосфор, висмут и сурьма принадлежат к V группе периодической системы. Эти элементы имеют слоистую решетку, причем в плоскости слоя каждый атом имеет три ближайших соседа (рис. 1.13, б) слои связаны друг с другом слабыми силами Ван-дер-Ваальса. У селена и теллура, принадлежащих к VI группе, атомы образуют длинные цепочки так, что каждый имеет два ближайших соседа (рис. 1.13, в) цепочки связаны между собой силами Ван-дерт Ваальса. Наконец, в решетке йода, принадлежащего к VII труп-  [c.19]

Водородное перенапряжение в в Постоянная Холла R при комнатной температуре (4 килогаусс) в сл(/а, гаусс Отражательная способность в % при л 1000 А л = 4000 А = 7000 А = 12 ООО А Коэффт циент преломления при 5461 А твердого олова жидкого олова Магнитная восприимчивость в единицах GS белого олова при 18° С серого олова при О С жидкого олова при 250 С Поверхностное натяжение при 232° С в duHl M Вязкость при 376° С в Температура сверхпроводимости в К  [c.251]

С плотность 7,28. В природе обычно встречается в виде минерала касситерита (оловянный камень) SnOj. Олове устойчиво по отношению к воздуху и воде. Растворяется в крепких щелочаа с выделением водорода, растворяется медленно в разбавленной соляной кислоте, хорошо — в концентрированной соляной кислоте, горячей концентрированной серной кислоте, холодной разбавленной аз.отной кислоте, царской водке-В соединениях двух- и четырехвалентно образует два окисла SnO и SnO , которым соответствуют соли двух- и четырехвалентного олова. При охлаждении переходит в другую форму — серое олово (устойчиво при температуре ниже 13° С), представляющую собой хрупкий, серого цвета металл.  [c.377]

В ряде кристаллов частично заполненные зоны образуются в результате слабого перекрытия верх, запол-neHHoii зоны с 1П1Жней пустой. Такие вещества (графит, Bi, Sb) паз. полуметаллами (рис. 2, в). В нек-рых ио-лупроиодннках (напр., серое олово) одна из ветвей, выходящих пз точки вырожде)шя —0), идёт вверх,  [c.90]


Олово может существовать в двух -аллотропических модификациях а — серое олово, устойчивое при температурах иже 13,2° С, и р — обычное белое олово, устойчивое при температурах выше 13,2°. Олово имеет структуру характерного гО)Меополяриого вещества алмаза, но высокая теплопроводность его свидетельствует о слабой связи электро нов в структуре что эта шязь по своему  [c.25]

Олово применяется в основном как легирующий компонент и как защитное покрытие на стальных, медных и латунных изделиях. Оно проявляет высокую коррозионную стойкость в возд) хе, природных водах и в средах пищевой промышленности (малая токсичность продуктов коррозии). Под действием загрязненного воздуха (SOj, хлориды, HiS) покрытия быстро тускнеют или темнеют.Под влиянием низкой температуры обычная модификащ1я олова (белое олово) может превратиться в серый порошок (серое олово), при этом оловянное noR-рытие теряет свои защитные свойства. Это явление называется "оловянной чумой", так как разрушение может перебрасываться на оловянные предметы, соприкасающиеся с "зараженным" предметом или находящиеся рядом с ним.  [c.89]

Оловянная чума — яркий пример полиморфного превращения. Но он во многом нестандартен. И белое, и серое олово имеют необычные для металлов сложные решетки, сам переход происходит при достаточно низких температурах и сопровождается сильным изменением объема. Классическими для металлов являются превращения при нагревании плотио-упакованных структур ГЦК и ГПУ в более рыхлую ОЦК структуру. Они происходят в кальции, стронции, титане, цирконии, гафнии, таллии и некоторых других металлах. Была даже высказана гипотеза, что и наоборот, элементы, которые известны только в ОЦК модификации, должны при низких температурах переходить в плотноупакованные структуры. И действительно в классических ОЦК металлах — литии и натрии— такое явление было обнаружено экспериментально.  [c.134]

Олово (Sn) — химический элемент IV группы периодической системы элементов, атомный номер 50, атомная масса 118,69. Серебристо-белый металл, мягкий и пластичный = 231,9°С. Так называемое белое олово (P-Sn) с плотностью 7290 кг/м полиморфнб и 1йже 13,2"С переходит в серое олово (a-Sn) с плотностью 5850 кг/м . На воздухе тускнеет, покрываясь пленкой оксида, стойкого к химическим реагентам. Около 59% используемого олова идет на производство баббитов, типографских и других сплавов. Олово применяется для покрытия других металлов, защиты их от коррозии (лужение), на изготовление белой жести для консервных банок, изготовление фольги и др.  [c.222]

Атомы в ковалентных кристаллах связаны химическими силами, природа которых была рассмотрена в главе 1. Например, атом углерода образует четыре сильные гибридные связи в тет--раэдрических направлениях, и в алмазе атомы углерода соединяются в тетраэдрическую решетку (рис. 5). Каждая связь локализована и осуществляется парой электронов с антипараллельными спинами. Твердое тело представляет собой по существу одну гигантскую молекулу. Поскольку каждый атом сильно связан с соседями, для кристалла характерны высокие значения твердости, сопротивления пластической деформации, температуры и теплоты плавления. Типичные ковалентные кристаллы образуют элементы IV группы периодической системы помимо углерода, это кремний, германий и серое олово. Такие же локализованные парные связи с тетраэдрической симметрией возникают в кристалле карборунда (Si ) между чередующимися атомами кремния и углерода. Различие электроотрицательностей у этих элементов мало, и связи не имеют заметной полярности.  [c.20]


Смотреть страницы где упоминается термин Сера-олово : [c.57]    [c.348]    [c.348]    [c.350]    [c.371]    [c.20]    [c.34]    [c.310]    [c.310]    [c.191]    [c.251]    [c.352]    [c.189]    [c.389]    [c.26]    [c.26]    [c.26]    [c.209]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Сера-олово



ПОИСК



Олово

Олово серое

Олово серое

Олово, белое и серое

Чугун серый 421, XII Чума* олова 901, XII



© 2025 Mash-xxl.info Реклама на сайте