Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская задача теории упругости для прямоугольных пластин

Здесь предлагается метод расчета цилиндрических складчатых систем, основанный на выводах первой главы и первого раздела. Теоретической основой метода является, как и для рассмотренных выше двумерных задач, вариационный метод Канторовича-Власова. Уравнение, описывающее изгиб прямоугольной пластины, представлено в п. 7.2, уравнение изгиба круглой пластины - в п. 7.3. Построим аналогичное уравнение для плоской задачи теории упругости прямоугольных пластин.  [c.480]


Условия неустойчивого распространения небольших расслоений (L < 0,5 , где i — толщина стенки конструкции, а высота раскрытия расслоения 5 = 0,5-2,0 мм) в [25] анализировали на основе решения плоской задачи теории упругости (плоская деформация) для пластин с внешними границами, свободными от нагрузок. Расчеты проводили методом конечных элементов для пластин, имеющих изолированное расслоение в виде прямоугольной щели, а также несколько водородных расслоений, расположенных на разных уровнях по высоте п.та-стины. Изолированными считали не взаимодействующие друг с другом водородные расслоения, расстояние между которыми в плане составляло более 2-12 мм в зависимости от длины расслоения L (табл. 12) при высоте сечения более (0,8-1,0)1..  [c.127]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Плоская задача теории упругости для прямоугольных пластин  [c.480]

В статьях [55, 56] предлагается новый вариант теории трехслойных пластин с несжимаемым в поперечном направлении заполнителем, основанный на гипотезе ломаной нормали. Уравнения равновесия в перемещениях получены с помощью принципа Лагранжа. Формальным введением малого параметра в дифференциальные уравнения решение исходной задачи сведено к итерационному процессу, содержащему решение задачи об изгибе пластины на упругом основании и плоской задачи теории упругости. Точное решение получено для прямоугольной шарнирно-опертой по контуру пластины, найдена оценка погрешности приближенного решения, получаемого после произвольного числа итераций. Этими же авторами предложен метод расчета осесимметричных круглых трехслойных пластин с легким сжимаемым заполнителем на действие нагрузок, симметричных и обратносимметричных относительно срединной плоскости. Разложение нагрузок на составляющие позволяет упростить определение постоянных, входящих в общее решение задачи.  [c.13]


Применение к модели методов вычислений, используемых в строительной механике стержней, позволяет приближенно решать задачи теории пластин, дисков и оболочек. После того как приблизительно с начала 50-х гг. стали появляться быстродействующие вычислительные машины, начали развиваться матричные методы в статике упругих систем для расчета сложных конструкций. Возникли различные вычислительные методы для анализа многократно статически неопределимых систем. Аргирис [В19] в особенности довел методы перемещений и сил в матричной форме до эффективных общих вычислительных методов расчета статики и динамики сложных систем (например, конструкций самолетов). Примерно к тому же времени относится обобщение этих методов благодаря идее расчленения сплошной среды на конечное множество частей с последующим применением к ним вычислительных матричных методов. В различных работах [41, 42] впервые появилось понятие конечного элемента и последовало применение метода сначала к плоским задачам теории упругости с использованием треугольных или прямоугольных конечных элементов >.  [c.133]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]

В первой части книги (главы 17), предназначенной в основном для студентов, рассмотрены следующие разделы курса теория напряженно-деформированного состояния, физические соот-ногления и постановки задач теории упругости, вариационные принципы, контактная задача теории упругости, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. При этом используется аппарат тензорного исчисления в прямоугольной декартовой системе коордипат. Теоретический материал сопровождается типовыми примерами регпения учебных задач. Удобные для контроля и самоконтроля знаний студентов тестовые задания приведены в приложении.  [c.7]


Смотреть страницы где упоминается термин Плоская задача теории упругости для прямоугольных пластин : [c.228]   
Смотреть главы в:

Численные методы в механике  -> Плоская задача теории упругости для прямоугольных пластин



ПОИСК



Задача упругости

Задачи теории упругости

Задачи теории упругости плоская

Пластина плоская

Пластина прямоугольная

Плоская задача

Теории Задача плоская

Теория пластин

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте